Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.04131
Cited By
Barzilai-Borwein Step Size for Stochastic Gradient Descent
13 May 2016
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Barzilai-Borwein Step Size for Stochastic Gradient Descent"
25 / 25 papers shown
Title
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
Distributed and Scalable Optimization for Robust Proton Treatment Planning
A. Fu
V. Taasti
M. Zarepisheh
24
2
0
27 Apr 2023
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
32
15
0
03 Nov 2022
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
31
1
0
26 Oct 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
23
1
0
23 Aug 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
45
1
0
28 Apr 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
26
4
0
29 Jan 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
29
1
0
30 Sep 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems
Zhan Gao
Alec Koppel
Alejandro Ribeiro
33
10
0
02 Jul 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
29
181
0
24 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
30
168
0
19 Dec 2019
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
36
3
0
01 Dec 2019
Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG
Ran Xin
U. Khan
S. Kar
22
8
0
08 Oct 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
50
205
0
24 May 2019
Block stochastic gradient descent for large-scale tomographic reconstruction in a parallel network
Yushan Gao
A. Biguri
T. Blumensath
34
3
0
28 Mar 2019
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
30
6
0
10 Jul 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
27
361
0
05 Jun 2018
SPSA-FSR: Simultaneous Perturbation Stochastic Approximation for Feature Selection and Ranking
Zeren D. Yenice
Niranjan Adhikari
Yong Kai Wong
V. Aksakalli
A. T. Gumus
B. Abbasi
27
8
0
16 Apr 2018
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
43
6
0
20 Nov 2017
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
1