ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.04131
  4. Cited By
Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent

13 May 2016
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
ArXivPDFHTML

Papers citing "Barzilai-Borwein Step Size for Stochastic Gradient Descent"

25 / 25 papers shown
Title
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
Distributed and Scalable Optimization for Robust Proton Treatment
  Planning
Distributed and Scalable Optimization for Robust Proton Treatment Planning
A. Fu
V. Taasti
M. Zarepisheh
24
2
0
27 Apr 2023
Stochastic Steffensen method
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
  Minimization
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
32
15
0
03 Nov 2022
Adaptive scaling of the learning rate by second order automatic
  differentiation
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
31
1
0
26 Oct 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques
  as Second Order Information
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
23
1
0
23 Aug 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean
  Norms
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
45
1
0
28 Apr 2022
A Stochastic Bundle Method for Interpolating Networks
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
26
4
0
29 Jan 2022
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free
  Optimization
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
29
1
0
30 Sep 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
  Optimization Problems
Balancing Rates and Variance via Adaptive Batch-Size for Stochastic Optimization Problems
Zhan Gao
Alec Koppel
Alejandro Ribeiro
33
10
0
02 Jul 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
29
181
0
24 Feb 2020
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
30
168
0
19 Dec 2019
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive
  Step Size
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
36
3
0
01 Dec 2019
Variance-Reduced Decentralized Stochastic Optimization with Gradient
  Tracking -- Part II: GT-SVRG
Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG
Ran Xin
U. Khan
S. Kar
22
8
0
08 Oct 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
50
205
0
24 May 2019
Block stochastic gradient descent for large-scale tomographic
  reconstruction in a parallel network
Block stochastic gradient descent for large-scale tomographic reconstruction in a parallel network
Yushan Gao
A. Biguri
T. Blumensath
34
3
0
28 Mar 2019
Dual optimization for convex constrained objectives without the
  gradient-Lipschitz assumption
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
30
6
0
10 Jul 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
27
361
0
05 Jun 2018
SPSA-FSR: Simultaneous Perturbation Stochastic Approximation for Feature
  Selection and Ranking
SPSA-FSR: Simultaneous Perturbation Stochastic Approximation for Feature Selection and Ranking
Zeren D. Yenice
Niranjan Adhikari
Yong Kai Wong
V. Aksakalli
A. T. Gumus
B. Abbasi
27
8
0
16 Apr 2018
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Block-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
BDL
ODL
43
6
0
20 Nov 2017
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
1