ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06049
  4. Cited By
A Multi-Batch L-BFGS Method for Machine Learning
v1v2 (latest)

A Multi-Batch L-BFGS Method for Machine Learning

19 May 2016
A. Berahas
J. Nocedal
Martin Takáč
    ODL
ArXiv (abs)PDFHTML

Papers citing "A Multi-Batch L-BFGS Method for Machine Learning"

50 / 53 papers shown
Title
Designing Preconditioners for SGD: Local Conditioning, Noise Floors, and Basin Stability
Designing Preconditioners for SGD: Local Conditioning, Noise Floors, and Basin Stability
Mitchell Scott
Tianshi Xu
Z. Tang
Alexandra Pichette-Emmons
Qiang Ye
Y. Saad
Yuanzhe Xi
AI4CE
221
0
0
24 Nov 2025
PDLRecover: Privacy-preserving Decentralized Model Recovery with Machine Unlearning
PDLRecover: Privacy-preserving Decentralized Model Recovery with Machine Unlearning
Xiangman Li
Xiaodong Wu
Jianbing Ni
Mohamed Mahmoud
Maazen Alsabaan
AAML
123
0
0
18 Jun 2025
FUSE: First-Order and Second-Order Unified SynthEsis in Stochastic OptimizationConference on Algebraic Informatics (AI), 2025
Zhanhong Jiang
Md Zahid Hasan
Aditya Balu
Joshua R. Waite
Genyi Huang
Soumik Sarkar
154
0
0
06 Mar 2025
Mobile Robotic Multi-View Photometric Stereo
Mobile Robotic Multi-View Photometric StereoIsprs Journal of Photogrammetry and Remote Sensing (ISPRS J. Photogramm. Remote Sens.), 2025
Suryansh Kumar
171
0
0
15 Feb 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
178
2
0
28 Jan 2025
Knowledge Distillation with Adapted WeightStatistics (Berlin) (SB), 2025
Sirong Wu
Junjie Liu
Xi Luo
Yuhui Deng
314
1
0
06 Jan 2025
Exact Gauss-Newton Optimization for Training Deep Neural Networks
Exact Gauss-Newton Optimization for Training Deep Neural Networks
Mikalai Korbit
Adeyemi Damilare Adeoye
Alberto Bemporad
Mario Zanon
ODL
237
3
0
23 May 2024
Second-order Information Promotes Mini-Batch Robustness in
  Variance-Reduced Gradients
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
181
2
0
23 Apr 2024
Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention
Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention
Ethan N. Evans
Matthew G. Cook
Zachary P. Bradshaw
Margarite L. LaBorde
316
9
0
21 Mar 2024
Parallel Trust-Region Approaches in Neural Network Training: Beyond
  Traditional Methods
Parallel Trust-Region Approaches in Neural Network Training: Beyond Traditional Methods
Ken Trotti
Samuel A. Cruz Alegría
Alena Kopanicáková
Rolf Krause
176
1
0
21 Dec 2023
Jorge: Approximate Preconditioning for GPU-efficient Second-order
  Optimization
Jorge: Approximate Preconditioning for GPU-efficient Second-order Optimization
Siddharth Singh
Zack Sating
A. Bhatele
ODL
172
0
0
18 Oct 2023
A Distributed Data-Parallel PyTorch Implementation of the Distributed
  Shampoo Optimizer for Training Neural Networks At-Scale
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Hao-Jun Michael Shi
Tsung-Hsien Lee
Shintaro Iwasaki
Jose Gallego-Posada
Zhijing Li
Kaushik Rangadurai
Dheevatsa Mudigere
Michael Rabbat
ODL
200
43
0
12 Sep 2023
A Critical Review of Physics-Informed Machine Learning Applications in
  Subsurface Energy Systems
A Critical Review of Physics-Informed Machine Learning Applications in Subsurface Energy Systems
Abdeldjalil Latrach
M. L. Malki
Misael Morales
Mohamed Mehana
M. Rabiei
PINNAI4CE
153
59
0
06 Aug 2023
On amortizing convex conjugates for optimal transport
On amortizing convex conjugates for optimal transportInternational Conference on Learning Representations (ICLR), 2022
Brandon Amos
OT
276
31
0
21 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network
  Optimization
Component-Wise Natural Gradient Descent -- An Efficient Neural Network OptimizationInternational Symposium on Computing and Networking - Across Practical Development and Theoretical Research (ISAPDTR), 2022
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
162
1
0
11 Oct 2022
SP2: A Second Order Stochastic Polyak Method
SP2: A Second Order Stochastic Polyak MethodInternational Conference on Learning Representations (ICLR), 2022
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
149
14
0
17 Jul 2022
Deep Leakage from Model in Federated Learning
Deep Leakage from Model in Federated Learning
Zihao Zhao
Mengen Luo
Wenbo Ding
FedML
110
18
0
10 Jun 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel RecombinationNeural Information Processing Systems (NeurIPS), 2022
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
252
25
0
09 Jun 2022
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning
M. Yousefi
Angeles Martinez
ODL
102
1
0
18 May 2022
Data-aided Underwater Acoustic Ray Propagation Modeling
Data-aided Underwater Acoustic Ray Propagation ModelingIEEE Journal of Oceanic Engineering (IEEE J. Ocean. Eng.), 2022
Kexin Li
M. Chitre
147
15
0
12 May 2022
The Right to be Forgotten in Federated Learning: An Efficient
  Realization with Rapid Retraining
The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid RetrainingIEEE Conference on Computer Communications (INFOCOM), 2022
Yi Liu
Lei Xu
Lizhen Qu
Cong Wang
Bo Li
MU
128
203
0
14 Mar 2022
Resource-constrained Federated Edge Learning with Heterogeneous Data:
  Formulation and Analysis
Resource-constrained Federated Edge Learning with Heterogeneous Data: Formulation and Analysis
Yi Liu
Yuanshao Zhu
James Jianqiao Yu
FedML
143
29
0
14 Oct 2021
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
  Optimization
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic OptimizationMathematical Programming Computation (MPC), 2021
Raghu Bollapragada
Stefan M. Wild
116
13
0
24 Sep 2021
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order
  Information
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
Majid Jahani
S. Rusakov
Zheng Shi
Peter Richtárik
Michael W. Mahoney
Martin Takávc
ODL
142
29
0
11 Sep 2021
Quasi-Newton Quasi-Monte Carlo for variational Bayes
Quasi-Newton Quasi-Monte Carlo for variational Bayes
Sifan Liu
Art B. Owen
BDL
150
4
0
07 Apr 2021
A Retrospective Approximation Approach for Smooth Stochastic
  Optimization
A Retrospective Approximation Approach for Smooth Stochastic OptimizationMathematics of Operations Research (MOR), 2021
David Newton
Raghu Bollapragada
R. Pasupathy
N. Yip
221
3
0
07 Mar 2021
An Adaptive Memory Multi-Batch L-BFGS Algorithm for Neural Network
  Training
An Adaptive Memory Multi-Batch L-BFGS Algorithm for Neural Network TrainingIFAC-PapersOnLine (IFAC-PapersOnLine), 2020
Federico Zocco
Seán F. McLoone
ODL
103
5
0
14 Dec 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Asynchronous Parallel Stochastic Quasi-Newton MethodsParallel Computing (PC), 2020
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
182
10
0
02 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
195
0
0
26 Aug 2020
Enhance Curvature Information by Structured Stochastic Quasi-Newton
  Methods
Enhance Curvature Information by Structured Stochastic Quasi-Newton Methods
Minghan Yang
Dong Xu
Yongfeng Li
Zaiwen Wen
Mengyun Chen
ODL
143
3
0
17 Jun 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
117
10
0
06 Jun 2020
Stochastic Calibration of Radio Interferometers
Stochastic Calibration of Radio Interferometers
S. Yatawatta
145
6
0
02 Mar 2020
Stochastic Newton and Cubic Newton Methods with Simple Local
  Linear-Quadratic Rates
Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates
D. Kovalev
Konstantin Mishchenko
Peter Richtárik
ODL
158
51
0
03 Dec 2019
Adaptive Sampling Quasi-Newton Methods for Derivative-Free Stochastic
  Optimization
Adaptive Sampling Quasi-Newton Methods for Derivative-Free Stochastic Optimization
Raghu Bollapragada
Stefan M. Wild
74
10
0
29 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex
  Optimization
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex OptimizationMathematical programming (Math. Program.), 2019
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
148
36
0
21 Oct 2019
Quasi-Newton Optimization Methods For Deep Learning Applications
Quasi-Newton Optimization Methods For Deep Learning ApplicationsAdvances in Intelligent Systems and Computing (AISC), 2019
J. Rafati
Roummel F. Marcia
ODL
116
15
0
04 Sep 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning PerspectiveIEEE Transactions on Cybernetics (IEEE Trans. Cybern.), 2019
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
181
618
0
17 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed
  SR1
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1International Conference on Machine Learning, Optimization, and Data Science (MOD), 2019
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
186
16
0
30 May 2019
A Stochastic LBFGS Algorithm for Radio Interferometric Calibration
A Stochastic LBFGS Algorithm for Radio Interferometric Calibration
S. Yatawatta
Lukas De Clercq
H. Spreeuw
F. Diblen
147
8
0
11 Apr 2019
On the approximation of the solution of partial differential equations
  by artificial neural networks trained by a multilevel Levenberg-Marquardt
  method
On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method
H. Calandra
Serge Gratton
E. Riccietti
X. Vasseur
76
8
0
09 Apr 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
285
48
0
28 Jan 2019
Stochastic Trust Region Inexact Newton Method for Large-scale Machine
  Learning
Stochastic Trust Region Inexact Newton Method for Large-scale Machine Learning
Vinod Kumar Chauhan
A. Sharma
Kalpana Dahiya
211
7
0
26 Dec 2018
Deep Reinforcement Learning via L-BFGS Optimization
Deep Reinforcement Learning via L-BFGS Optimization
Chris Paxton
Roummel F. Marcia
OffRL
149
0
0
06 Nov 2018
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical
  Risk Minimization via Accumulating Sample Strategy
Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
Xi He
Chenxin Ma
Aryan Mokhtari
Dheevatsa Mudigere
Alejandro Ribeiro
Martin Takáč
197
19
0
26 Oct 2018
On the Acceleration of L-BFGS with Second-Order Information and
  Stochastic Batches
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
139
7
0
14 Jul 2018
Trust-Region Algorithms for Training Responses: Machine Learning Methods
  Using Indefinite Hessian Approximations
Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations
Jennifer B. Erway
J. Griffin
Roummel F. Marcia
Riadh Omheni
290
26
0
01 Jul 2018
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Umut Simsekli
Çağatay Yıldız
T. H. Nguyen
G. Richard
A. Cemgil
146
22
0
07 Jun 2018
Redundancy Techniques for Straggler Mitigation in Distributed
  Optimization and Learning
Redundancy Techniques for Straggler Mitigation in Distributed Optimization and LearningJournal of machine learning research (JMLR), 2018
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
108
54
0
14 Mar 2018
A Progressive Batching L-BFGS Method for Machine Learning
A Progressive Batching L-BFGS Method for Machine Learning
Raghu Bollapragada
Dheevatsa Mudigere
J. Nocedal
Hao-Jun Michael Shi
P. T. P. Tang
ODL
174
164
0
15 Feb 2018
Straggler Mitigation in Distributed Optimization Through Data Encoding
Straggler Mitigation in Distributed Optimization Through Data Encoding
C. Karakuş
Yifan Sun
Suhas Diggavi
W. Yin
135
150
0
14 Nov 2017
12
Next