Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.06398
Cited By
Stochastic Variance Reduction Methods for Saddle-Point Problems
20 May 2016
B. Palaniappan
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variance Reduction Methods for Saddle-Point Problems"
41 / 41 papers shown
Title
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
41
0
0
18 Oct 2024
Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
Minheng Xiao
Shi Bo
Zhizhong Wu
48
5
0
01 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
47
0
0
19 Jul 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
48
3
0
19 Mar 2024
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
57
14
0
25 May 2023
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems
Jérôme Bolte
Edouard Pauwels
Antonio Silveti-Falls
28
13
0
15 Dec 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
45
2
0
12 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
44
31
0
29 Aug 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
51
179
0
28 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
24
49
0
15 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
42
35
0
06 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
27
7
0
01 Feb 2022
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
38
61
0
29 Mar 2021
A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
D. Kovalev
Anastasia Koloskova
Martin Jaggi
Peter Richtárik
Sebastian U. Stich
31
73
0
03 Nov 2020
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
37
97
0
29 Oct 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
41
50
0
08 Jul 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
33
75
0
09 Apr 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
30
83
0
22 Feb 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
35
48
0
02 Jan 2020
Online and Bandit Algorithms for Nonstationary Stochastic Saddle-Point Optimization
Abhishek Roy
Yifang Chen
Krishnakumar Balasubramanian
P. Mohapatra
19
26
0
03 Dec 2019
Variance Reduced Stochastic Proximal Algorithm for AUC Maximization
Soham Dan
Dushyant Sahoo
12
3
0
08 Nov 2019
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
72
30
0
31 Oct 2019
Stochastic Variance Reduced Primal Dual Algorithms for Empirical Composition Optimization
Adithya M. Devraj
Jianshu Chen
32
13
0
22 Jul 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
25
3
0
22 Jun 2019
Linear Lower Bounds and Conditioning of Differentiable Games
Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
31
10
0
17 Jun 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
50
205
0
24 May 2019
Stochastic Primal-Dual Algorithms with Faster Convergence than
O
(
1
/
T
)
O(1/\sqrt{T})
O
(
1/
T
)
for Problems without Bilinear Structure
Yan Yan
Yi Tian Xu
Qihang Lin
Lijun Zhang
Tianbao Yang
27
35
0
23 Apr 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
François Fleuret
Simon Lacoste-Julien
25
135
0
18 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
32
325
0
24 Jan 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
24
174
0
14 Jun 2018
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization
Hoi-To Wai
Zhuoran Yang
Zhaoran Wang
Mingyi Hong
30
169
0
03 Jun 2018
A Variational Inequality Perspective on Generative Adversarial Networks
Gauthier Gidel
Hugo Berard
Gaëtan Vignoud
Pascal Vincent
Simon Lacoste-Julien
GAN
28
351
0
28 Feb 2018
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
68
120
0
05 Feb 2018
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms
Jialei Wang
Lin Xiao
11
42
0
07 Mar 2017
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Convex Sparse Matrix Factorizations
Francis R. Bach
Julien Mairal
Jean Ponce
142
143
0
10 Dec 2008
1