Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1605.06444
Cited By
v1
v2
v3 (latest)
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes
20 May 2016
Carlo Baldassi
C. Borgs
J. Chayes
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes"
18 / 68 papers shown
Title
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
Marco Baity-Jesi
Levent Sagun
Mario Geiger
S. Spigler
Gerard Ben Arous
C. Cammarota
Yann LeCun
Matthieu Wyart
Giulio Biroli
AI4CE
174
117
0
19 Mar 2018
Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning
Yao Zhang
Andrew M. Saxe
Madhu S. Advani
A. Lee
111
60
0
05 Mar 2018
An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks
Qianxiao Li
Shuji Hao
138
77
0
04 Mar 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
147
145
0
26 Dec 2017
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
299
725
0
06 Dec 2017
Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
Pratik Chaudhari
Stefano Soatto
MLT
164
309
0
30 Oct 2017
On the role of synaptic stochasticity in training low-precision neural networks
Carlo Baldassi
Federica Gerace
H. Kappen
Carlo Lucibello
Luca Saglietti
Enzo Tartaglione
R. Zecchina
119
23
0
26 Oct 2017
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
182
278
0
10 Aug 2017
Parle: parallelizing stochastic gradient descent
Pratik Chaudhari
Carlo Baldassi
R. Zecchina
Stefano Soatto
Ameet Talwalkar
Adam M. Oberman
ODL
FedML
111
23
0
03 Jul 2017
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
Lei Wu
Zhanxing Zhu
E. Weinan
ODL
133
222
0
30 Jun 2017
Efficiency of quantum versus classical annealing in non-convex learning problems
Carlo Baldassi
R. Zecchina
144
48
0
26 Jun 2017
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
Levent Sagun
Utku Evci
V. U. Güney
Yann N. Dauphin
Léon Bottou
191
425
0
14 Jun 2017
A General Theory for Training Learning Machine
Hong Zhao
AI4CE
28
3
0
23 Apr 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
200
155
0
17 Apr 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
267
846
0
31 Mar 2017
Reinforced stochastic gradient descent for deep neural network learning
Haiping Huang
Taro Toyoizumi
ODL
73
1
0
27 Jan 2017
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
297
802
0
06 Nov 2016
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
191
27
0
20 Nov 2015
Previous
1
2