Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1605.06444
Cited By
v1
v2
v3 (latest)
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes
20 May 2016
Carlo Baldassi
C. Borgs
J. Chayes
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes"
50 / 67 papers shown
Title
Entropy-Guided Sampling of Flat Modes in Discrete Spaces
Pinaki Mohanty
Riddhiman Bhattacharya
Ruqi Zhang
596
0
0
05 May 2025
High-dimensional manifold of solutions in neural networks: insights from statistical physics
Enrico M. Malatesta
194
4
0
20 Feb 2025
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Vittorio Erba
Emanuele Troiani
Luca Biggio
Antoine Maillard
Lenka Zdeborová
261
2
0
24 Oct 2024
Exploring Loss Landscapes through the Lens of Spin Glass Theory
Hao Liao
Wei Zhang
Zhanyi Huang
Zexiao Long
Mingyang Zhou
Xiaoqun Wu
Rui Mao
Chi Ho Yeung
122
2
0
30 Jul 2024
Flat Posterior Does Matter For Bayesian Model Averaging
Sungjun Lim
Jeyoon Yeom
Sooyon Kim
Hoyoon Byun
Jinho Kang
Yohan Jung
Jiyoung Jung
Kyungwoo Song
BDL
AAML
253
0
0
21 Jun 2024
Strong convexity-guided hyper-parameter optimization for flatter losses
Rahul Yedida
Snehanshu Saha
132
0
0
07 Feb 2024
An effective theory of collective deep learning
Lluís Arola-Fernández
Lucas Lacasa
FedML
AI4CE
73
4
0
19 Oct 2023
Entropy-MCMC: Sampling from Flat Basins with Ease
Bolian Li
Ruqi Zhang
145
6
0
09 Oct 2023
On the different regimes of Stochastic Gradient Descent
Antonio Sclocchi
Matthieu Wyart
141
25
0
19 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
143
1
0
13 Sep 2023
The Copycat Perceptron: Smashing Barriers Through Collective Learning
Giovanni Catania
A. Decelle
Beatriz Seoane
FedML
72
2
0
07 Aug 2023
Eight challenges in developing theory of intelligence
Haiping Huang
127
12
0
20 Jun 2023
Learning Capacity: A Measure of the Effective Dimensionality of a Model
Daiwei Chen
Wei-Di Chang
Pratik Chaudhari
94
4
0
27 May 2023
Bayes Complexity of Learners vs Overfitting
Grzegorz Gluch
R. Urbanke
UQCV
BDL
62
1
0
13 Mar 2023
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry
Fabrizio Pittorino
Antonio Ferraro
Gabriele Perugini
Christoph Feinauer
Carlo Baldassi
R. Zecchina
336
27
0
07 Feb 2022
Quantifying Relevance in Learning and Inference
M. Marsili
Y. Roudi
72
19
0
01 Feb 2022
Quantum Approximate Optimization Algorithm applied to the binary perceptron
Pietro Torta
G. Mbeng
Carlo Baldassi
R. Zecchina
G. Santoro
72
8
0
19 Dec 2021
Loss Landscape Dependent Self-Adjusting Learning Rates in Decentralized Stochastic Gradient Descent
Wei Zhang
Mingrui Liu
Yu Feng
Xiaodong Cui
Brian Kingsbury
Yuhai Tu
69
4
0
02 Dec 2021
Equivalence between algorithmic instability and transition to replica symmetry breaking in perceptron learning systems
Yang Zhao
Junbin Qiu
Mingshan Xie
Haiping Huang
87
4
0
26 Nov 2021
Binary perceptron: efficient algorithms can find solutions in a rare well-connected cluster
Emmanuel Abbe
Shuangping Li
Allan Sly
MQ
123
38
0
04 Nov 2021
Deep learning via message passing algorithms based on belief propagation
Carlo Lucibello
Fabrizio Pittorino
Gabriele Perugini
R. Zecchina
176
15
0
27 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
164
29
0
01 Oct 2021
Entropic alternatives to initialization
Daniele Musso
118
1
0
16 Jul 2021
Unveiling the structure of wide flat minima in neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
Gabriele Perugini
R. Zecchina
194
39
0
02 Jul 2021
PAC Bayesian Performance Guarantees for Deep (Stochastic) Networks in Medical Imaging
Anthony Sicilia
Xingchen Zhao
Anastasia Sosnovskikh
Seong Jae Hwang
BDL
UQCV
120
4
0
12 Apr 2021
Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric Perceptron
Emmanuel Abbe
Shuangping Li
Allan Sly
147
46
0
25 Feb 2021
SALR: Sharpness-aware Learning Rate Scheduler for Improved Generalization
Xubo Yue
Maher Nouiehed
Raed Al Kontar
ODL
91
4
0
10 Nov 2020
SGB: Stochastic Gradient Bound Method for Optimizing Partition Functions
Junchang Wang
A. Choromańska
73
0
0
03 Nov 2020
Some Remarks on Replicated Simulated Annealing
Vicent Gripon
Matthias Löwe
Franck Vermet
90
2
0
30 Sep 2020
Partial local entropy and anisotropy in deep weight spaces
Daniele Musso
119
3
0
17 Jul 2020
Entropic gradient descent algorithms and wide flat minima
Fabrizio Pittorino
Carlo Lucibello
Christoph Feinauer
Gabriele Perugini
Carlo Baldassi
Elizaveta Demyanenko
R. Zecchina
ODL
MLT
221
35
0
14 Jun 2020
Beyond the storage capacity: data driven satisfiability transition
P. Rotondo
M. Pastore
M. Gherardi
59
18
0
20 May 2020
How neural networks find generalizable solutions: Self-tuned annealing in deep learning
Yu Feng
Y. Tu
MLT
86
9
0
06 Jan 2020
Clustering of solutions in the symmetric binary perceptron
Carlo Baldassi
R. D. Vecchia
Carlo Lucibello
R. Zecchina
138
23
0
15 Nov 2019
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
160
33
0
03 Nov 2019
Natural representation of composite data with replicated autoencoders
Matteo Negri
D. Bergamini
Carlo Baldassi
R. Zecchina
Christoph Feinauer
SyDa
64
1
0
29 Sep 2019
Maximal Relevance and Optimal Learning Machines
O. Duranthon
M. Marsili
R Xie
150
0
0
27 Sep 2019
Properties of the geometry of solutions and capacity of multi-layer neural networks with Rectified Linear Units activations
Carlo Baldassi
Enrico M. Malatesta
R. Zecchina
MLT
224
47
0
17 Jul 2019
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
Stéphane dÁscoli
Levent Sagun
Joan Bruna
Giulio Biroli
110
37
0
16 Jun 2019
How to iron out rough landscapes and get optimal performances: Averaged Gradient Descent and its application to tensor PCA
Giulio Biroli
C. Cammarota
F. Ricci-Tersenghi
124
28
0
29 May 2019
Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models: Extension
Yunfei Teng
Wenbo Gao
F. Chalus
A. Choromańska
Shiqian Ma
Adrian Weller
188
14
0
24 May 2019
Shaping the learning landscape in neural networks around wide flat minima
Carlo Baldassi
Fabrizio Pittorino
R. Zecchina
MLT
157
87
0
20 May 2019
The loss surface of deep linear networks viewed through the algebraic geometry lens
D. Mehta
Tianran Chen
Tingting Tang
J. Hauenstein
ODL
136
33
0
17 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
177
211
0
02 Oct 2018
Deep learning systems as complex networks
Alberto Testolin
Michele Piccolini
S. Suweis
AI4CE
BDL
GNN
61
29
0
28 Sep 2018
Optimization of neural networks via finite-value quantum fluctuations
Masayuki Ohzeki
Shuntaro Okada
Masayoshi Terabe
S. Taguchi
78
21
0
01 Jul 2018
Input and Weight Space Smoothing for Semi-supervised Learning
Safa Cicek
Stefano Soatto
87
6
0
23 May 2018
Glassy nature of the hard phase in inference problems
F. Antenucci
S. Franz
Pierfrancesco Urbani
Lenka Zdeborová
129
30
0
15 May 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
167
220
0
16 Apr 2018
Comparing Dynamics: Deep Neural Networks versus Glassy Systems
Marco Baity-Jesi
Levent Sagun
Mario Geiger
S. Spigler
Gerard Ben Arous
C. Cammarota
Yann LeCun
Matthieu Wyart
Giulio Biroli
AI4CE
174
117
0
19 Mar 2018
1
2
Next