ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06796
  4. Cited By
Interpretable Distribution Features with Maximum Testing Power
v1v2 (latest)

Interpretable Distribution Features with Maximum Testing Power

22 May 2016
Wittawat Jitkrittum
Z. Szabó
Kacper P. Chwialkowski
Arthur Gretton
ArXiv (abs)PDFHTML

Papers citing "Interpretable Distribution Features with Maximum Testing Power"

47 / 47 papers shown
Title
Topological Signatures of Adversaries in Multimodal Alignments
Topological Signatures of Adversaries in Multimodal Alignments
Minh Vu
Geigh Zollicoffer
Huy Mai
B. Nebgen
Boian S. Alexandrov
Manish Bhattarai
AAML
122
1
0
29 Jan 2025
Recurrent Neural Goodness-of-Fit Test for Time Series
Recurrent Neural Goodness-of-Fit Test for Time Series
Aoran Zhang
Wenbin Zhou
Liyan Xie
Shixiang Zhu
93
1
0
17 Oct 2024
Learning Representations for Independence Testing
Learning Representations for Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
103
0
0
10 Sep 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
114
1
0
12 Jun 2024
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
124
1
0
24 May 2024
Understanding Deep Generative Models with Generalized Empirical
  Likelihoods
Understanding Deep Generative Models with Generalized Empirical Likelihoods
Suman V. Ravuri
Mélanie Rey
S. Mohamed
M. Deisenroth
VLM
72
5
0
16 Jun 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
145
10
0
14 Jan 2023
A Permutation-free Kernel Two-Sample Test
A Permutation-free Kernel Two-Sample Test
S. Shekhar
Ilmun Kim
Aaditya Ramdas
77
24
0
27 Nov 2022
Controlling Moments with Kernel Stein Discrepancies
Controlling Moments with Kernel Stein Discrepancies
Heishiro Kanagawa
Alessandro Barp
Arthur Gretton
Lester W. Mackey
82
9
0
10 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
104
13
0
09 Nov 2022
Calibration tests beyond classification
Calibration tests beyond classification
David Widmann
Fredrik Lindsten
Dave Zachariah
85
18
0
21 Oct 2022
Efficient Aggregated Kernel Tests using Incomplete $U$-statistics
Efficient Aggregated Kernel Tests using Incomplete UUU-statistics
Antonin Schrab
Ilmun Kim
Benjamin Guedj
Arthur Gretton
111
31
0
18 Jun 2022
AutoML Two-Sample Test
AutoML Two-Sample Test
Jonas M. Kubler
Vincent Stimper
Simon Buchholz
Krikamol Muandet
Bernhard Schölkopf
75
17
0
17 Jun 2022
A Kernelised Stein Statistic for Assessing Implicit Generative Models
A Kernelised Stein Statistic for Assessing Implicit Generative Models
Wenkai Xu
Gesine Reinert
SyDa
81
3
0
31 May 2022
MMD Aggregated Two-Sample Test
MMD Aggregated Two-Sample Test
Antonin Schrab
Ilmun Kim
Mélisande Albert
Béatrice Laurent
Benjamin Guedj
Arthur Gretton
113
58
0
28 Oct 2021
An Asymptotic Test for Conditional Independence using Analytic Kernel
  Embeddings
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
M. Scetbon
Laurent Meunier
Yaniv Romano
50
11
0
28 Oct 2021
A Fast and Effective Large-Scale Two-Sample Test Based on Kernels
A Fast and Effective Large-Scale Two-Sample Test Based on Kernels
Hoseung Song
Hao Chen
58
3
0
07 Oct 2021
Kernel distance measures for time series, random fields and other
  structured data
Kernel distance measures for time series, random fields and other structured data
Srinjoy Das
H. Mhaskar
A. Cloninger
38
3
0
29 Sep 2021
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale
  Confirmatory Item Factor Analysis
Deep Learning-Based Estimation and Goodness-of-Fit for Large-Scale Confirmatory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
CML
66
1
0
20 Sep 2021
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data
Feng Liu
Wenkai Xu
Jie Lu
Danica J. Sutherland
84
24
0
14 Jun 2021
PEARL: Data Synthesis via Private Embeddings and Adversarial
  Reconstruction Learning
PEARL: Data Synthesis via Private Embeddings and Adversarial Reconstruction Learning
Seng Pei Liew
Tsubasa Takahashi
Michihiko Ueno
FedML
74
29
0
08 Jun 2021
Human-in-the-loop Handling of Knowledge Drift
Human-in-the-loop Handling of Knowledge Drift
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
42
7
0
27 Mar 2021
Convergence of Gaussian-smoothed optimal transport distance with
  sub-gamma distributions and dependent samples
Convergence of Gaussian-smoothed optimal transport distance with sub-gamma distributions and dependent samples
Yixing Zhang
Xiuyuan Cheng
Galen Reeves
OT
61
10
0
28 Feb 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
84
20
0
12 Feb 2021
A Witness Two-Sample Test
A Witness Two-Sample Test
Jonas M. Kubler
Wittawat Jitkrittum
Bernhard Schölkopf
Krikamol Muandet
99
20
0
10 Feb 2021
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks
Ruize Gao
Feng Liu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Masashi Sugiyama
AAML
95
58
0
22 Oct 2020
Concept Drift Detection: Dealing with MissingValues via Fuzzy Distance
  Estimations
Concept Drift Detection: Dealing with MissingValues via Fuzzy Distance Estimations
Anjin Liu
Jie Lu
Guangquan Zhang
155
15
0
09 Aug 2020
Learning Kernel Tests Without Data Splitting
Learning Kernel Tests Without Data Splitting
Jonas M. Kubler
Wittawat Jitkrittum
Bernhard Schölkopf
Krikamol Muandet
77
24
0
03 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate
  Distributional Regression
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
96
43
0
29 May 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
92
189
0
21 Feb 2020
Model Reuse with Reduced Kernel Mean Embedding Specification
Model Reuse with Reduced Kernel Mean Embedding Specification
Xi-Zhu Wu
Wen-qi Xu
Song Liu
Zhi Zhou
150
25
0
20 Jan 2020
Two-sample Testing Using Deep Learning
Two-sample Testing Using Deep Learning
Matthias Kirchler
S. Khorasani
Marius Kloft
C. Lippert
84
38
0
14 Oct 2019
Classification Logit Two-sample Testing by Neural Networks
Classification Logit Two-sample Testing by Neural Networks
Xiuyuan Cheng
A. Cloninger
89
33
0
25 Sep 2019
Comparing distributions: $\ell_1$ geometry improves kernel two-sample
  testing
Comparing distributions: ℓ1\ell_1ℓ1​ geometry improves kernel two-sample testing
M. Scetbon
Gaël Varoquaux
61
10
0
19 Sep 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
71
8
0
27 May 2019
Kernel-Guided Training of Implicit Generative Models with Stability
  Guarantees
Kernel-Guided Training of Implicit Generative Models with Stability Guarantees
Arash Mehrjou
Wittawat Jitkrittum
Krikamol Muandet
Bernhard Schölkopf
GAN
28
4
0
26 Jan 2019
Signature moments to characterize laws of stochastic processes
Signature moments to characterize laws of stochastic processes
I. Chevyrev
Harald Oberhauser
407
112
0
25 Oct 2018
Entropic optimal transport is maximum-likelihood deconvolution
Entropic optimal transport is maximum-likelihood deconvolution
Philippe Rigollet
Jonathan Niles-Weed
OT
87
78
0
14 Sep 2018
Counterfactual Mean Embeddings
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CMLOffRL
101
40
0
22 May 2018
On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests
On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests
Krishnakumar Balasubramanian
Tong Li
M. Yuan
67
28
0
24 Sep 2017
Two-sample Statistics Based on Anisotropic Kernels
Two-sample Statistics Based on Anisotropic Kernels
Xiuyuan Cheng
A. Cloninger
Ronald R. Coifman
110
18
0
14 Sep 2017
Near-linear time approximation algorithms for optimal transport via
  Sinkhorn iteration
Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Jason M. Altschuler
Jonathan Niles-Weed
Philippe Rigollet
OT
93
596
0
26 May 2017
A Linear-Time Kernel Goodness-of-Fit Test
A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum
Wenkai Xu
Z. Szabó
Kenji Fukumizu
Arthur Gretton
90
104
0
22 May 2017
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
230
407
0
20 Oct 2016
An Adaptive Test of Independence with Analytic Kernel Embeddings
An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum
Z. Szabó
Arthur Gretton
113
47
0
15 Oct 2016
Sketching for Large-Scale Learning of Mixture Models
Sketching for Large-Scale Learning of Mixture Models
Nicolas Keriven
Anthony Bourrier
Rémi Gribonval
Patrick Pérez
76
75
0
09 Jun 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
155
749
0
31 May 2016
1