ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08754
  4. Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning

Faster Eigenvector Computation via Shift-and-Invert Preconditioning

26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
ArXiv (abs)PDFHTML

Papers citing "Faster Eigenvector Computation via Shift-and-Invert Preconditioning"

50 / 2,352 papers shown
Title
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
336
543
0
14 Aug 2018
Neural Importance Sampling
Neural Importance Sampling
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
280
403
0
11 Aug 2018
Unbiased Implicit Variational Inference
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
320
60
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
229
15
0
05 Aug 2018
Likelihood-free inference with an improved cross-entropy estimator
Likelihood-free inference with an improved cross-entropy estimator
M. Stoye
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
FedMLUQCVBDL
221
51
0
02 Aug 2018
Understanding and Improving Interpolation in Autoencoders via an
  Adversarial Regularizer
Understanding and Improving Interpolation in Autoencoders via an Adversarial RegularizerInternational Conference on Learning Representations (ICLR), 2018
David Berthelot
Colin Raffel
Aurko Roy
Ian Goodfellow
276
276
0
19 Jul 2018
ClariNet: Parallel Wave Generation in End-to-End Text-to-Speech
ClariNet: Parallel Wave Generation in End-to-End Text-to-SpeechInternational Conference on Learning Representations (ICLR), 2018
Ming-Yu Liu
Kainan Peng
Jitong Chen
288
358
0
19 Jul 2018
Generative adversarial interpolative autoencoding: adversarial training
  on latent space interpolations encourage convex latent distributions
Generative adversarial interpolative autoencoding: adversarial training on latent space interpolations encourage convex latent distributions
Tim Sainburg
Marvin Thielk
Brad Theilman
Benjamin Migliori
T. Gentner
DRLGAN
236
55
0
17 Jul 2018
IntroVAE: Introspective Variational Autoencoders for Photographic Image
  Synthesis
IntroVAE: Introspective Variational Autoencoders for Photographic Image SynthesisNeural Information Processing Systems (NeurIPS), 2018
Huaibo Huang
Zhihang Li
Ran He
Zhenan Sun
Tieniu Tan
DRL
187
284
0
17 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 ConvolutionsNeural Information Processing Systems (NeurIPS), 2018
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
699
3,394
0
09 Jul 2018
Resembled Generative Adversarial Networks: Two Domains with Similar
  Attributes
Resembled Generative Adversarial Networks: Two Domains with Similar AttributesBritish Machine Vision Conference (BMVC), 2018
Duhyeon Bang
Hyunjung Shim
GANOOD
130
6
0
03 Jul 2018
Mixed batches and symmetric discriminators for GAN training
Mixed batches and symmetric discriminators for GAN training
Thomas Lucas
Corentin Tallec
Jakob Verbeek
Yann Ollivier
153
38
0
19 Jun 2018
Deep State Space Models for Unconditional Word Generation
Deep State Space Models for Unconditional Word Generation
Florian Schmidt
Thomas Hofmann
142
16
0
12 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
307
44
0
12 Jun 2018
Stochastic seismic waveform inversion using generative adversarial
  networks as a geological prior
Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
L. Mosser
O. Dubrule
M. Blunt
GANAI4CE
233
222
0
10 Jun 2018
Implicit Policy for Reinforcement Learning
Implicit Policy for Reinforcement Learning
Yunhao Tang
Shipra Agrawal
183
14
0
10 Jun 2018
Randomized Value Functions via Multiplicative Normalizing Flows
Randomized Value Functions via Multiplicative Normalizing Flows
Ahmed Touati
Harsh Satija
Joshua Romoff
Joelle Pineau
Pascal Vincent
113
39
0
06 Jun 2018
Training Generative Reversible Networks
Training Generative Reversible Networks
R. Schirrmeister
Patryk Chrabkaszcz
Katharina Eggensperger
T. Ball
BDLGAN
172
8
0
05 Jun 2018
Backpropagation for Implicit Spectral Densities
Backpropagation for Implicit Spectral Densities
Aditya A. Ramesh
Yann LeCun
104
10
0
01 Jun 2018
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
289
158
0
31 May 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CETPM
454
195
0
30 May 2018
Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
Alireza Zaeemzadeh
Nazanin Rahnavard
M. Shah
139
74
0
18 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
770
414
0
18 May 2018
Replicating Active Appearance Model by Generator Network
Replicating Active Appearance Model by Generator Network
Tian Han
Jiawen Wu
Ying Nian Wu
CVBM
102
2
0
14 May 2018
Representing smooth functions as compositions of near-identity functions
  with implications for deep network optimization
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
Peter L. Bartlett
S. Evans
Philip M. Long
228
32
0
13 Apr 2018
A Compact Network Learning Model for Distribution Regression
A Compact Network Learning Model for Distribution Regression
C. Kou
H. Lee
Teck Khim Ng
127
10
0
13 Apr 2018
MGGAN: Solving Mode Collapse using Manifold Guided Training
MGGAN: Solving Mode Collapse using Manifold Guided Training
Duhyeon Bang
Hyunjung Shim
GAN
127
89
0
12 Apr 2018
Latent Space Policies for Hierarchical Reinforcement Learning
Latent Space Policies for Hierarchical Reinforcement Learning
Tuomas Haarnoja
Kristian Hartikainen
Pieter Abbeel
Sergey Levine
BDL
173
200
0
09 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRLAI4CE
390
479
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational InferenceConference on Uncertainty in Artificial Intelligence (UAI), 2018
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDLDRL
340
257
0
15 Mar 2018
Learning the Base Distribution in Implicit Generative Models
Learning the Base Distribution in Implicit Generative Models
Cem Subakan
Oluwasanmi Koyejo
Paris Smaragdis
GANDRL
99
8
0
12 Mar 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
169
120
0
23 Feb 2018
BRUNO: A Deep Recurrent Model for Exchangeable Data
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
148
35
0
21 Feb 2018
i-RevNet: Deep Invertible Networks
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
254
348
0
20 Feb 2018
Distribution Matching in Variational Inference
Distribution Matching in Variational Inference
Mihaela Rosca
Balaji Lakshminarayanan
S. Mohamed
GANCMLDRL
343
101
0
19 Feb 2018
Leveraging the Exact Likelihood of Deep Latent Variable Models
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei
J. Frellsen
DRL
250
68
0
13 Feb 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDLDRL
215
136
0
08 Feb 2018
Transformation Autoregressive Networks
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric Xing
J. Schneider
OOD
284
88
0
30 Jan 2018
Improved Training of Generative Adversarial Networks Using
  Representative Features
Improved Training of Generative Adversarial Networks Using Representative Features
Duhyeon Bang
Hyunjung Shim
GAN
185
38
0
28 Jan 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
301
294
0
10 Jan 2018
PixelSNAIL: An Improved Autoregressive Generative Model
PixelSNAIL: An Improved Autoregressive Generative ModelInternational Conference on Machine Learning (ICML), 2017
Xi Chen
Nikhil Mishra
Mostafa Rohaninejad
Pieter Abbeel
DRLDiffMBDLGAN
212
297
0
28 Dec 2017
Integral Equations and Machine Learning
Integral Equations and Machine Learning
A. Keller
Ken Dahm
109
13
0
17 Dec 2017
How well does your sampler really work?
How well does your sampler really work?
Ryan D. Turner
Brady Neal
126
4
0
16 Dec 2017
Toward Multimodal Image-to-Image Translation
Toward Multimodal Image-to-Image Translation
Jun-Yan Zhu
Richard Y. Zhang
Deepak Pathak
Trevor Darrell
Alexei A. Efros
Oliver Wang
Eli Shechtman
366
1,412
0
30 Nov 2017
Auxiliary Guided Autoregressive Variational Autoencoders
Auxiliary Guided Autoregressive Variational Autoencoders
Thomas Lucas
Jakob Verbeek
GANDRL
124
21
0
30 Nov 2017
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
384
890
0
28 Nov 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
248
131
0
25 Nov 2017
An Iterative Closest Points Approach to Neural Generative Models
An Iterative Closest Points Approach to Neural Generative Models
Joose Rajamäki
Perttu Hämäläinen
3DPC
179
1
0
16 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
548
770
0
15 Nov 2017
Convolutional Normalizing Flows
Convolutional Normalizing Flows
Guoqing Zheng
Yiming Yang
J. Carbonell
BDL
136
11
0
07 Nov 2017
Previous
123...45464748
Next