Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.00002
Cited By
Uncertain programming model for multi-item solid transportation problem
31 May 2016
Hasan Dalman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertain programming model for multi-item solid transportation problem"
50 / 138 papers shown
Title
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
23
0
0
02 Nov 2022
Minimum Kernel Discrepancy Estimators
Chris J. Oates
30
10
0
28 Oct 2022
Geometry of Radial Basis Neural Networks for Safety Biased Approximation of Unsafe Regions
Ahmad Abuaish
Mohit Srinivasan
Patricio A. Vela
44
3
0
11 Oct 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
23
11
0
28 Sep 2022
Automatic and effective discovery of quantum kernels
Massimiliano Incudini
Daniele Lizzio Bosco
F. Martini
Michele Grossi
Giuseppe Serra
Alessandra Di Pierro
31
4
0
22 Sep 2022
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michal Derezinski
E. Rebrova
27
16
0
20 Aug 2022
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
42
1
0
03 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
D. Meunier
Mattes Mollenhauer
A. Gretton
30
46
0
02 Aug 2022
Self-supervised learning with rotation-invariant kernels
Léon Zheng
Gilles Puy
E. Riccietti
Patrick Pérez
Rémi Gribonval
SSL
16
2
0
28 Jul 2022
Semi-supervised Deep Multi-view Stereo
Hongbin Xu
Wei-Han Cheng
Yang Liu
Zhipeng Zhou
Haihong Xiao
Baigui Sun
Xuansong Xie
Wenxiong Kang
38
7
0
24 Jul 2022
Adapting to Online Label Shift with Provable Guarantees
Yong Bai
Yu-Jie Zhang
Peng Zhao
Masashi Sugiyama
Zhi-Hua Zhou
OOD
27
25
0
05 Jul 2022
Distribution-based Sketching of Single-Cell Samples
Vishal Baskaran
Jolene S Ranek
Siyuan Shan
Natalie Stanley
Junier B. Oliva
11
13
0
30 Jun 2022
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
18
60
0
27 May 2022
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Florian Kalinke
Marco Heyden
Edouard Fouché
Klemens Bohm
Klemens Böhm
24
0
0
25 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
31
25
0
20 Mar 2022
Generalized Label Shift Correction via Minimum Uncertainty Principle: Theory and Algorithm
You-Wei Luo
Chuan-Xian Ren
27
2
0
26 Feb 2022
Stochastic Causal Programming for Bounding Treatment Effects
Kirtan Padh
Jakob Zeitler
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
Niki Kilbertus
CML
30
26
0
22 Feb 2022
Information Theory with Kernel Methods
Francis R. Bach
32
40
0
17 Feb 2022
Investigation of Alternative Measures for Mutual Information
Bulut Kuskonmaz
Jaron Skovsted Gundersen
R. Wisniewski
21
4
0
02 Feb 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
A. Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Graph Representation Learning via Aggregation Enhancement
Maxim Fishman
Chaim Baskin
Evgenii Zheltonozhskii
Almog David
Ron Banner
A. Mendelson
24
0
0
30 Jan 2022
Change Detection of Markov Kernels with Unknown Pre and Post Change Kernel
Hao Chen
Jiacheng Tang
Abhishek Gupta
33
7
0
27 Jan 2022
Supervised learning of sheared distributions using linearized optimal transport
Varun Khurana
Harish Kannan
A. Cloninger
Caroline Moosmüller
OT
19
16
0
25 Jan 2022
Transparent Single-Cell Set Classification with Kernel Mean Embeddings
Siyuan Shan
Vishal Baskaran
Haidong Yi
Jolene S Ranek
Natalie Stanley
Junier Oliva
19
11
0
18 Jan 2022
Minimax risk classifiers with 0-1 loss
Santiago Mazuelas
Mauricio Romero
Peter Grünwald
32
6
0
17 Jan 2022
Local permutation tests for conditional independence
Ilmun Kim
Matey Neykov
Sivaraman Balakrishnan
Larry A. Wasserman
31
27
0
22 Dec 2021
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
24
34
0
16 Dec 2021
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
32
3
0
06 Nov 2021
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
26
15
0
18 Oct 2021
Offline Reinforcement Learning with Soft Behavior Regularization
Haoran Xu
Xianyuan Zhan
Jianxiong Li
Honglei Yin
OffRL
23
31
0
14 Oct 2021
Topology, Convergence, and Reconstruction of Predictive States
S. Loomis
James P. Crutchfield
AI4CE
24
7
0
19 Sep 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
36
2
0
13 Sep 2021
From the Greene--Wu Convolution to Gradient Estimation over Riemannian Manifolds
Tianyu Wang
Yifeng Huang
Didong Li
17
8
0
17 Aug 2021
How many moments does MMD compare?
Rustem Takhanov
21
0
0
27 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
A Note on Optimizing Distributions using Kernel Mean Embeddings
Boris Muzellec
Francis R. Bach
Alessandro Rudi
11
4
0
18 Jun 2021
Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
9
35
0
15 Jun 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
31
26
0
10 Jun 2021
The Inductive Bias of Quantum Kernels
Jonas M. Kubler
Simon Buchholz
Bernhard Schölkopf
19
119
0
07 Jun 2021
Adaptive Methods for Real-World Domain Generalization
Abhimanyu Dubey
Vignesh Ramanathan
Alex Pentland
D. Mahajan
OOD
30
88
0
29 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
Linear Optimal Transport Embedding: Provable Wasserstein classification for certain rigid transformations and perturbations
Caroline Moosmüller
A. Cloninger
OT
17
43
0
20 Aug 2020
Probabilistic Neighbourhood Component Analysis: Sample Efficient Uncertainty Estimation in Deep Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
UQCV
BDL
39
6
0
18 Jul 2020
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
26
22
0
14 Jul 2020
Robust Persistence Diagrams using Reproducing Kernels
Siddharth Vishwanath
Kenji Fukumizu
S. Kuriki
Bharath K. Sriperumbudur
21
7
0
17 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
35
39
0
29 May 2020
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability
H. Aghakhani
Dongyu Meng
Yu-Xiang Wang
Christopher Kruegel
Giovanni Vigna
AAML
20
105
0
01 May 2020
Similarity of Neural Networks with Gradients
Shuai Tang
Wesley J. Maddox
Charlie Dickens
Tom Diethe
Andreas C. Damianou
14
25
0
25 Mar 2020
Previous
1
2
3
Next