ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00002
  4. Cited By
Uncertain programming model for multi-item solid transportation problem

Uncertain programming model for multi-item solid transportation problem

31 May 2016
Hasan Dalman
ArXivPDFHTML

Papers citing "Uncertain programming model for multi-item solid transportation problem"

50 / 138 papers shown
Title
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
23
0
0
02 Nov 2022
Minimum Kernel Discrepancy Estimators
Minimum Kernel Discrepancy Estimators
Chris J. Oates
30
10
0
28 Oct 2022
Geometry of Radial Basis Neural Networks for Safety Biased Approximation
  of Unsafe Regions
Geometry of Radial Basis Neural Networks for Safety Biased Approximation of Unsafe Regions
Ahmad Abuaish
Mohit Srinivasan
Patricio A. Vela
44
3
0
11 Oct 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
23
11
0
28 Sep 2022
Automatic and effective discovery of quantum kernels
Automatic and effective discovery of quantum kernels
Massimiliano Incudini
Daniele Lizzio Bosco
F. Martini
Michele Grossi
Giuseppe Serra
Alessandra Di Pierro
31
4
0
22 Sep 2022
Sharp Analysis of Sketch-and-Project Methods via a Connection to
  Randomized Singular Value Decomposition
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michal Derezinski
E. Rebrova
27
16
0
20 Aug 2022
Equivariant Disentangled Transformation for Domain Generalization under
  Combination Shift
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
42
1
0
03 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
D. Meunier
Mattes Mollenhauer
A. Gretton
30
46
0
02 Aug 2022
Self-supervised learning with rotation-invariant kernels
Self-supervised learning with rotation-invariant kernels
Léon Zheng
Gilles Puy
E. Riccietti
Patrick Pérez
Rémi Gribonval
SSL
16
2
0
28 Jul 2022
Semi-supervised Deep Multi-view Stereo
Semi-supervised Deep Multi-view Stereo
Hongbin Xu
Wei-Han Cheng
Yang Liu
Zhipeng Zhou
Haihong Xiao
Baigui Sun
Xuansong Xie
Wenxiong Kang
38
7
0
24 Jul 2022
Adapting to Online Label Shift with Provable Guarantees
Adapting to Online Label Shift with Provable Guarantees
Yong Bai
Yu-Jie Zhang
Peng Zhao
Masashi Sugiyama
Zhi-Hua Zhou
OOD
27
25
0
05 Jul 2022
Distribution-based Sketching of Single-Cell Samples
Distribution-based Sketching of Single-Cell Samples
Vishal Baskaran
Jolene S Ranek
Siyuan Shan
Natalie Stanley
Junier B. Oliva
11
13
0
30 Jun 2022
Learning Dynamical Systems via Koopman Operator Regression in
  Reproducing Kernel Hilbert Spaces
Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces
Vladimir Kostic
P. Novelli
Andreas Maurer
C. Ciliberto
Lorenzo Rosasco
Massimiliano Pontil
18
60
0
27 May 2022
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Florian Kalinke
Marco Heyden
Edouard Fouché
Klemens Bohm
Klemens Böhm
24
0
0
25 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
31
25
0
20 Mar 2022
Generalized Label Shift Correction via Minimum Uncertainty Principle:
  Theory and Algorithm
Generalized Label Shift Correction via Minimum Uncertainty Principle: Theory and Algorithm
You-Wei Luo
Chuan-Xian Ren
27
2
0
26 Feb 2022
Stochastic Causal Programming for Bounding Treatment Effects
Stochastic Causal Programming for Bounding Treatment Effects
Kirtan Padh
Jakob Zeitler
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
Niki Kilbertus
CML
30
26
0
22 Feb 2022
Information Theory with Kernel Methods
Information Theory with Kernel Methods
Francis R. Bach
32
40
0
17 Feb 2022
Investigation of Alternative Measures for Mutual Information
Investigation of Alternative Measures for Mutual Information
Bulut Kuskonmaz
Jaron Skovsted Gundersen
R. Wisniewski
21
4
0
02 Feb 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
A. Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Graph Representation Learning via Aggregation Enhancement
Graph Representation Learning via Aggregation Enhancement
Maxim Fishman
Chaim Baskin
Evgenii Zheltonozhskii
Almog David
Ron Banner
A. Mendelson
24
0
0
30 Jan 2022
Change Detection of Markov Kernels with Unknown Pre and Post Change
  Kernel
Change Detection of Markov Kernels with Unknown Pre and Post Change Kernel
Hao Chen
Jiacheng Tang
Abhishek Gupta
33
7
0
27 Jan 2022
Supervised learning of sheared distributions using linearized optimal
  transport
Supervised learning of sheared distributions using linearized optimal transport
Varun Khurana
Harish Kannan
A. Cloninger
Caroline Moosmüller
OT
19
16
0
25 Jan 2022
Transparent Single-Cell Set Classification with Kernel Mean Embeddings
Transparent Single-Cell Set Classification with Kernel Mean Embeddings
Siyuan Shan
Vishal Baskaran
Haidong Yi
Jolene S Ranek
Natalie Stanley
Junier Oliva
19
11
0
18 Jan 2022
Minimax risk classifiers with 0-1 loss
Minimax risk classifiers with 0-1 loss
Santiago Mazuelas
Mauricio Romero
Peter Grünwald
32
6
0
17 Jan 2022
Local permutation tests for conditional independence
Local permutation tests for conditional independence
Ilmun Kim
Matey Neykov
Sivaraman Balakrishnan
Larry A. Wasserman
31
27
0
22 Dec 2021
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
24
34
0
16 Dec 2021
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
32
3
0
06 Nov 2021
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
26
15
0
18 Oct 2021
Offline Reinforcement Learning with Soft Behavior Regularization
Offline Reinforcement Learning with Soft Behavior Regularization
Haoran Xu
Xianyuan Zhan
Jianxiong Li
Honglei Yin
OffRL
23
31
0
14 Oct 2021
Topology, Convergence, and Reconstruction of Predictive States
Topology, Convergence, and Reconstruction of Predictive States
S. Loomis
James P. Crutchfield
AI4CE
24
7
0
19 Sep 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
36
2
0
13 Sep 2021
From the Greene--Wu Convolution to Gradient Estimation over Riemannian
  Manifolds
From the Greene--Wu Convolution to Gradient Estimation over Riemannian Manifolds
Tianyu Wang
Yifeng Huang
Didong Li
17
8
0
17 Aug 2021
How many moments does MMD compare?
How many moments does MMD compare?
Rustem Takhanov
21
0
0
27 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
A Note on Optimizing Distributions using Kernel Mean Embeddings
A Note on Optimizing Distributions using Kernel Mean Embeddings
Boris Muzellec
Francis R. Bach
Alessandro Rudi
11
4
0
18 Jun 2021
Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions,
  Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey
Reproducing Kernel Hilbert Space, Mercer's Theorem, Eigenfunctions, Nyström Method, and Use of Kernels in Machine Learning: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
9
35
0
15 Jun 2021
A Neural Tangent Kernel Perspective of GANs
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
31
26
0
10 Jun 2021
The Inductive Bias of Quantum Kernels
The Inductive Bias of Quantum Kernels
Jonas M. Kubler
Simon Buchholz
Bernhard Schölkopf
19
119
0
07 Jun 2021
Adaptive Methods for Real-World Domain Generalization
Adaptive Methods for Real-World Domain Generalization
Abhimanyu Dubey
Vignesh Ramanathan
Alex Pentland
D. Mahajan
OOD
30
88
0
29 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean
  Embeddings and U-Statistic Regression
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient
  Flow
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
Linear Optimal Transport Embedding: Provable Wasserstein classification
  for certain rigid transformations and perturbations
Linear Optimal Transport Embedding: Provable Wasserstein classification for certain rigid transformations and perturbations
Caroline Moosmüller
A. Cloninger
OT
17
43
0
20 Aug 2020
Probabilistic Neighbourhood Component Analysis: Sample Efficient
  Uncertainty Estimation in Deep Learning
Probabilistic Neighbourhood Component Analysis: Sample Efficient Uncertainty Estimation in Deep Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
UQCV
BDL
39
6
0
18 Jul 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
26
22
0
14 Jul 2020
Robust Persistence Diagrams using Reproducing Kernels
Robust Persistence Diagrams using Reproducing Kernels
Siddharth Vishwanath
Kenji Fukumizu
S. Kuriki
Bharath K. Sriperumbudur
21
7
0
17 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate
  Distributional Regression
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
35
39
0
29 May 2020
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved
  Transferability
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability
H. Aghakhani
Dongyu Meng
Yu-Xiang Wang
Christopher Kruegel
Giovanni Vigna
AAML
20
105
0
01 May 2020
Similarity of Neural Networks with Gradients
Similarity of Neural Networks with Gradients
Shuai Tang
Wesley J. Maddox
Charlie Dickens
Tom Diethe
Andreas C. Damianou
14
25
0
25 Mar 2020
Previous
123
Next