Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.01885
Cited By
Learning to Optimize
6 June 2016
Ke Li
Jitendra Malik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Optimize"
50 / 54 papers shown
Title
Efficient End-to-End Learning for Decision-Making: A Meta-Optimization Approach
Rares Cristian
Pavithra Harsha
Georgia Perakis
Brian Quanz
19
0
0
16 May 2025
On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
Renpu Liu
Ruida Zhou
Cong Shen
Jing Yang
37
0
0
17 Oct 2024
Self-Supervised Learning of Iterative Solvers for Constrained Optimization
Lukas Luken
Sergio Lucia
41
0
0
12 Sep 2024
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
38
1
0
05 Sep 2024
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Frederik Hoppe
C. M. Verdun
Hannah Laus
Felix Krahmer
Holger Rauhut
UQCV
36
1
0
18 Jul 2024
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
46
3
0
09 Jul 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
A Deep Learning Based Resource Allocator for Communication Systems with Dynamic User Utility Demands
Pourya Behmandpoor
Panagiotis Patrinos
Marc Moonen
30
1
0
08 Nov 2023
Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning
Huan Zhang
Jinliang Ding
Liang Feng
Kay Chen Tan
Ke Li
45
3
0
19 Oct 2023
Advances and Challenges in Meta-Learning: A Technical Review
Anna Vettoruzzo
Mohamed-Rafik Bouguelia
Joaquin Vanschoren
Thorsteinn Rögnvaldsson
K. Santosh
OffRL
36
70
0
10 Jul 2023
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
40
47
0
27 Feb 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
36
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
49
9
0
02 Feb 2023
Thompson Sampling on Asymmetric
α
α
α
-Stable Bandits
Zhendong Shi
E. Kuruoglu
Xiaoli Wei
11
0
0
19 Mar 2022
Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning
Haoxiang Wang
Yite Wang
Ruoyu Sun
Bo Li
38
27
0
17 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
38
14
0
28 Feb 2022
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
29
39
0
09 May 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
67
223
0
27 Jan 2021
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
27
51
0
18 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
37
62
0
23 Sep 2020
L
2
^2
2
-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
Yuning You
Tianlong Chen
Zhangyang Wang
Yang Shen
GNN
101
82
0
30 Mar 2020
Learning to Learn Single Domain Generalization
Fengchun Qiao
Long Zhao
Xi Peng
OOD
57
433
0
30 Mar 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
44
220
0
06 Mar 2020
Safeguarded Learned Convex Optimization
Howard Heaton
Xiaohan Chen
Zhangyang Wang
W. Yin
24
22
0
04 Mar 2020
Learning to Optimize in Swarms
Yue Cao
Tianlong Chen
Zhangyang Wang
Yang Shen
25
55
0
09 Nov 2019
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation
Risto Vuorio
Shao-Hua Sun
Hexiang Hu
Joseph J. Lim
32
219
0
30 Oct 2019
Domain Generalization via Model-Agnostic Learning of Semantic Features
Qi Dou
Daniel Coelho De Castro
Konstantinos Kamnitsas
Ben Glocker
OOD
57
686
0
29 Oct 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
51
844
0
10 Sep 2019
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
22
86
0
10 Sep 2019
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
8
209
0
30 Aug 2019
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
28
18
0
19 Aug 2019
Optimizing quantum heuristics with meta-learning
M. Wilson
Rachel Stromswold
Filip Wudarski
Stuart Hadfield
N. Tubman
E. Rieffel
19
74
0
08 Aug 2019
Learning Surrogate Losses
Josif Grabocka
Randolf Scholz
Lars Schmidt-Thieme
27
41
0
24 May 2019
Meta-learning of Sequential Strategies
Pedro A. Ortega
Jane X. Wang
Mark Rowland
Tim Genewein
Z. Kurth-Nelson
...
Yee Whye Teh
H. V. Hasselt
Nando de Freitas
M. Botvinick
Shane Legg
OffRL
27
97
0
08 May 2019
Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms
M. Lones
14
67
0
21 Feb 2019
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Carla Bertocchi
Émilie Chouzenoux
M. Corbineau
J. Pesquet
M. Prato
27
107
0
11 Dec 2018
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
21
40
0
19 Nov 2018
Meta-Learning: A Survey
Joaquin Vanschoren
FedML
OOD
39
756
0
08 Oct 2018
AutoLoss: Learning Discrete Schedules for Alternate Optimization
Haowen Xu
Huatian Zhang
Zhiting Hu
Xiaodan Liang
Ruslan Salakhutdinov
Eric Xing
32
30
0
04 Oct 2018
On the Convergence of Learning-based Iterative Methods for Nonconvex Inverse Problems
Risheng Liu
Shichao Cheng
Yi He
Xin-Yue Fan
Zhouchen Lin
Zhongxuan Luo
29
68
0
16 Aug 2018
Unsupervised Meta-Learning for Reinforcement Learning
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
SSL
OffRL
54
106
0
12 Jun 2018
The Three Pillars of Machine Programming
Justin Emile Gottschlich
Armando Solar-Lezama
Nesime Tatbul
Michael Carbin
Martin Rinard
Regina Barzilay
Saman P. Amarasinghe
J. Tenenbaum
Tim Mattson
27
62
0
20 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
26
505
0
26 Jan 2018
Neural Optimizer Search with Reinforcement Learning
Irwan Bello
Barret Zoph
Vijay Vasudevan
Quoc V. Le
ODL
29
383
0
21 Sep 2017
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
65
2,780
0
19 Aug 2017
Learning Combinatorial Optimization Algorithms over Graphs
H. Dai
Elias Boutros Khalil
Yuyu Zhang
B. Dilkina
Le Song
46
1,446
0
05 Apr 2017
Learning Gradient Descent: Better Generalization and Longer Horizons
Kaifeng Lyu
Shunhua Jiang
Jian Li
20
113
0
10 Mar 2017
Learning to Optimize Neural Nets
Ke Li
Jitendra Malik
23
130
0
01 Mar 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
106
1,505
0
25 Jan 2017
1
2
Next