Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.02359
Cited By
Structure Learning in Graphical Modeling
7 June 2016
Mathias Drton
Marloes H. Maathuis
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Structure Learning in Graphical Modeling"
50 / 102 papers shown
Title
Consistent causal discovery with equal error variances: a least-squares perspective
Anamitra Chaudhuri
Yang Ni
Anirban Bhattacharya
CML
41
0
0
18 Sep 2025
Optimal structure learning and conditional independence testing
Ming Gao
Yuhao Wang
Bryon Aragam
160
0
0
08 Jul 2025
Nonlinear Causal Discovery for Grouped Data
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Konstantin Göbler
Tobias Windisch
Mathias Drton
CML
215
1
0
05 Jun 2025
A friendly introduction to triangular transport
M. Ramgraber
Daniel Sharp
M. Le Provost
Youssef Marzouk
210
0
0
27 Mar 2025
Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood
Bryon Aragam
Ruiyi Yang
368
0
0
29 Oct 2024
Discrete distributions are learnable from metastable samples
Abhijith Jayakumar
A. Lokhov
Sidhant Misra
Marc Vuffray
417
2
0
17 Oct 2024
High-Dimensional Differential Parameter Inference in Exponential Family using Time Score Matching
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Daniel J. Williams
Leyang Wang
Qizhen Ying
Song Liu
Mladen Kolar
337
2
0
14 Oct 2024
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
European Workshop on Probabilistic Graphical Models (PGM), 2024
Yurou Liang
Oleksandr Zadorozhnyi
Mathias Drton
CML
219
0
0
20 Aug 2024
Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity
International Journal of Approximate Reasoning (IJAR), 2024
David Strieder
Mathias Drton
CML
140
1
0
12 Aug 2024
DC Algorithm for Estimation of Sparse Gaussian Graphical Models
PLoS ONE (PLoS ONE), 2024
Tomokaze Shiratori
Yuichi Takano
150
0
0
08 Aug 2024
Greedy equivalence search for nonparametric graphical models
Bryon Aragam
CML
223
3
0
25 Jun 2024
Parameter identification in linear non-Gaussian causal models under general confounding
D. Tramontano
Mathias Drton
Jalal Etesami
CML
271
3
0
31 May 2024
From Probability to Counterfactuals: the Increasing Complexity of Satisfiability in Pearl's Causal Hierarchy
Julian Dörfler
Benito van der Zander
Markus Bläser
Maciej Liskiewicz
LRM
249
1
0
12 May 2024
Integer Programming for Learning Directed Acyclic Graphs from Non-identifiable Gaussian Models
Tong Xu
Armeen Taeb
Simge Kuccukyavuz
Ali Shojaie
CML
386
4
0
19 Apr 2024
Graph Structure Inference with BAM: Introducing the Bilinear Attention Mechanism
Philipp Froehlich
Heinz Koeppl
GNN
223
2
0
12 Feb 2024
Graphical models for multivariate extremes
Sebastian Engelke
Manuel Hentschel
Michael Lalancette
Frank Rottger
81
7
0
03 Feb 2024
Multiview Graph Learning with Consensus Graph
IEEE Transactions on Signal and Information Processing over Networks (TSIPN), 2024
Abdullah Karaaslanli
Selin Aviyente
163
3
0
24 Jan 2024
Scalable network reconstruction in subquadratic time
Tiago P. Peixoto
487
5
0
02 Jan 2024
Codiscovering graphical structure and functional relationships within data: A Gaussian Process framework for connecting the dots
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
Théo Bourdais
Pau Batlle
Xianjin Yang
Ricardo Baptista
Nicolas Rouquette
H. Owhadi
267
0
0
28 Nov 2023
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Neural Information Processing Systems (NeurIPS), 2023
Yeshu Li
Brian Ziebart
OOD
175
1
0
10 Nov 2023
Structured Neural Networks for Density Estimation and Causal Inference
Neural Information Processing Systems (NeurIPS), 2023
Asic Q. Chen
Ruian Shi
Xiang Gao
Ricardo Baptista
Rahul G. Krishnan
CML
TPM
163
8
0
03 Nov 2023
Structure Learning with Adaptive Random Neighborhood Informed MCMC
Neural Information Processing Systems (NeurIPS), 2023
Alberto Caron
Xitong Liang
Samuel Livingstone
Jim Griffin
137
4
0
01 Nov 2023
Model Selection over Partially Ordered Sets
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2023
Armeen Taeb
Peter Bühlmann
V. Chandrasekaran
129
6
0
20 Aug 2023
Partial Homoscedasticity in Causal Discovery with Linear Models
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2023
June Wu
Mathias Drton
CML
137
5
0
17 Aug 2023
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Journal of Scientific Computing (J. Sci. Comput.), 2023
Chengjing Wang
Peipei Tang
Wen-Bin He
Meixia Lin
224
2
0
17 Aug 2023
Interpretable Machine Learning for Discovery: Statistical Challenges \& Opportunities
Annual Review of Statistics and Its Application (ARSIA), 2023
Genevera I. Allen
Luqin Gan
Lili Zheng
199
9
0
02 Aug 2023
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Chris C. Emezue
Alexandre Drouin
T. Deleu
Stefan Bauer
Yoshua Bengio
CML
252
2
0
11 Jul 2023
causalAssembly
\texttt{causalAssembly}
causalAssembly
: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
Tobias Windisch
Mathias Drton
T. Pychynski
Steffen Sonntag
Martin Roth
CML
382
16
0
19 Jun 2023
The Functional Graphical Lasso
Kartik G. Waghmare
T. Masak
V. Panaretos
204
3
0
04 Jun 2023
Maximum a Posteriori Estimation in Graphical Models Using Local Linear Approximation
K. Sagar
J. Datta
Sayantan Banerjee
A. Bhadra
195
3
0
13 Mar 2023
Learning Personalized Brain Functional Connectivity of MDD Patients from Multiple Sites via Federated Bayesian Networks
Shuai Liu
Xiao Guo
S. Qi
Huan Wang
Xiangyu Chang
FedML
163
3
0
06 Jan 2023
Robust Model Selection of Gaussian Graphical Models
Abrar Zahin
Rajasekhar Anguluri
Lalitha Sankar
O. Kosut
Gautam Dasarathy
163
0
0
10 Nov 2022
pyGSL: A Graph Structure Learning Toolkit
Max Wasserman
Gonzalo Mateos
237
0
0
07 Nov 2022
Ensemble transport smoothing. Part II: Nonlinear updates
M. Ramgraber
Ricardo Baptista
D. McLaughlin
Youssef Marzouk
191
6
0
31 Oct 2022
Confounder Selection: Objectives and Approaches
F. R. Guo
A. Lundborg
Qingyuan Zhao
CML
234
8
0
29 Aug 2022
Learning Linear Non-Gaussian Polytree Models
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
D. Tramontano
Anthea Monod
Mathias Drton
227
10
0
13 Aug 2022
Valid Inference after Causal Discovery
Journal of the American Statistical Association (JASA), 2022
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
281
13
0
11 Aug 2022
Causal Structure Learning: a Combinatorial Perspective
Foundations of Computational Mathematics (FoCM), 2022
C. Squires
Caroline Uhler
CML
315
60
0
02 Jun 2022
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens
Stefano Teso
Laurens Bliek
Andrea Borghesi
M. Lombardi
Neil Yorke-Smith
Tias Guns
Baptiste Caramiaux
146
3
0
20 May 2022
Learning Graph Structure from Convolutional Mixtures
Max Wasserman
Saurabh Sihag
Gonzalo Mateos
Alejandro Ribeiro
GNN
CML
BDL
144
7
0
19 May 2022
Adversarial random forests for density estimation and generative modeling
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
David S. Watson
Kristin Blesch
Jan Kapar
Marvin N. Wright
GAN
286
36
0
19 May 2022
CKH: Causal Knowledge Hierarchy for Estimating Structural Causal Models from Data and Priors
Annual International Computer Software and Applications Conference (COMPSAC), 2022
Riddhiman Adib
M. Naved
Chih-Hao Fang
Md. Osman Gani
A. Grama
Paul M. Griffin
Sheikh Iqbal Ahamed
Mohammad Adibuzzaman
80
4
0
28 Apr 2022
Two Gaussian regularization methods for time-varying networks
Journal of Agricultural Biological and Environmental Statistics (JABES), 2022
Jie Jian
Peijun Sang
Mu Zhu
202
1
0
14 Feb 2022
Order-based Structure Learning without Score Equivalence
Biometrika (Biometrika), 2022
Hyunwoong Chang
James Cai
Quan Zhou
CML
OffRL
268
5
0
10 Feb 2022
Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian Processes
Hamed Jalali
Gjergji Kasneci
FedML
126
0
0
07 Feb 2022
Distributed Learning of Generalized Linear Causal Networks
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Qiaoling Ye
Arash A. Amini
Qing Zhou
CML
OOD
AI4CE
189
21
0
23 Jan 2022
Recursive Bayesian Networks: Generalising and Unifying Probabilistic Context-Free Grammars and Dynamic Bayesian Networks
Neural Information Processing Systems (NeurIPS), 2021
Robert Lieck
M. Rohrmeier
BDL
190
5
0
02 Nov 2021
Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles
Tianyi Yao
Minjie Wang
Genevera I. Allen
227
1
0
22 Oct 2021
Joint Gaussian Graphical Model Estimation: A Survey
Katherine Tsai
Oluwasanmi Koyejo
Mladen Kolar
CML
334
30
0
19 Oct 2021
Decentralized Learning of Tree-Structured Gaussian Graphical Models from Noisy Data
Akram Hussain
171
0
0
22 Sep 2021
1
2
3
Next