Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.02359
Cited By
Structure Learning in Graphical Modeling
7 June 2016
Mathias Drton
Marloes H. Maathuis
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Structure Learning in Graphical Modeling"
50 / 102 papers shown
Title
Interaction Models and Generalized Score Matching for Compositional Data
LOG IN (LOG IN), 2021
Shiqing Yu
Mathias Drton
Ali Shojaie
115
2
0
10 Sep 2021
WiseR: An end-to-end structure learning and deployment framework for causal graphical models
Shubham Maheshwari
Khushbu Pahwa
Tavpritesh Sethi
CML
249
1
0
16 Aug 2021
Learning Linear Polytree Structural Equation Models
Xingmei Lou
Yu Hu
Xiaodong Li
CML
304
1
0
22 Jul 2021
Prequential MDL for Causal Structure Learning with Neural Networks
J. Bornschein
Silvia Chiappa
Alan Malek
Rosemary Nan Ke
CML
188
2
0
02 Jul 2021
Bayesian structure learning and sampling of Bayesian networks with the R package BiDAG
Journal of Statistical Software (JSS), 2021
Polina Suter
Jack Kuipers
G. Moffa
N. Beerenwinkel
113
49
0
02 May 2021
Batch Bayesian Optimization on Permutations using the Acquisition Weighted Kernel
Neural Information Processing Systems (NeurIPS), 2021
Changyong Oh
Roberto Bondesan
E. Gavves
Max Welling
166
15
0
26 Feb 2021
Estimating a Directed Tree for Extremes
N. Tran
Johannes Buck
Claudia Klüppelberg
248
12
0
11 Feb 2021
Gaussian Experts Selection using Graphical Models
Hamed Jalali
Martin Pawelczyk
Gjerji Kasneci
176
3
0
02 Feb 2021
How do some Bayesian Network machine learned graphs compare to causal knowledge?
Anthony C. Constantinou
Norman E. Fenton
M. Neil
CML
205
3
0
25 Jan 2021
Learning and scoring Gaussian latent variable causal models with unknown additive interventions
Armeen Taeb
Juan L. Gamella
C. Heinze-Deml
Peter Buhlmann
CML
538
3
0
18 Jan 2021
Complexity analysis of Bayesian learning of high-dimensional DAG models and their equivalence classes
Annals of Statistics (Ann. Stat.), 2021
Quan Zhou
Hyunwoong Chang
317
15
0
11 Jan 2021
Learning non-Gaussian graphical models via Hessian scores and triangular transport
Journal of machine learning research (JMLR), 2021
Ricardo Baptista
Youssef Marzouk
Rebecca E. Morrison
O. Zahm
277
26
0
08 Jan 2021
Efficient and Scalable Structure Learning for Bayesian Networks: Algorithms and Applications
Rong Zhu
A. Pfadler
Ziniu Wu
Yuxing Han
Xiaoke Yang
Feng Ye
Zhenping Qian
Jingren Zhou
Tengjiao Wang
241
11
0
07 Dec 2020
Limits on Testing Structural Changes in Ising Models
Aditya Gangrade
B. Nazer
Venkatesh Saligrama
202
0
0
07 Nov 2020
Transfer Learning in Large-scale Gaussian Graphical Models with False Discovery Rate Control
Sai Li
T. Tony Cai
Hongzhe Li
204
72
0
21 Oct 2020
Aggregating Dependent Gaussian Experts in Local Approximation
International Conference on Pattern Recognition (ICPR), 2020
Hamed Jalali
Gjergji Kasneci
150
4
0
17 Oct 2020
Causal learning with sufficient statistics: an information bottleneck approach
D. Chicharro
M. Besserve
S. Panzeri
CML
150
5
0
12 Oct 2020
Efficient least squares for estimating total effects under linearity and causal sufficiency
Journal of machine learning research (JMLR), 2020
By F. Richard Guo
Emilija Perković
CML
341
13
0
08 Aug 2020
Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks
Journal of machine learning research (JMLR), 2020
Simge Küçükyavuz
Ali Shojaie
Hasan Manzour
Linchuan Wei
Hao-Hsiang Wu
299
19
0
29 May 2020
Sparse Structures for Multivariate Extremes
Annual Review of Statistics and Its Application (ARSIA), 2020
Sebastian Engelke
J. Ivanovs
224
86
0
25 Apr 2020
Differential Network Analysis: A Statistical Perspective
Ali Shojaie
250
54
0
09 Mar 2020
Multi-trek separation in Linear Structural Equation Models
SIAM Journal on applied algebra and geometry (JSAAG), 2020
Elina Robeva
Jean-Baptiste Seby
CML
288
12
0
28 Jan 2020
Human-like Time Series Summaries via Trend Utility Estimation
Pegah Jandaghi
Jay Pujara
AI4TS
162
1
0
16 Jan 2020
Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
195
27
0
07 Jan 2020
Graph quilting: graphical model selection from partially observed covariances
Giuseppe Vinci
Gautam Dasarathy
Genevera I. Allen
CML
327
22
0
11 Dec 2019
Direct Estimation of Differential Functional Graphical Models
Neural Information Processing Systems (NeurIPS), 2019
Boxin Zhao
Y Samuel Wang
Mladen Kolar
179
15
0
22 Oct 2019
Estimating Differential Latent Variable Graphical Models with Applications to Brain Connectivity
Sen Na
Mladen Kolar
Oluwasanmi Koyejo
155
26
0
12 Sep 2019
Certifiably Optimal Sparse Inverse Covariance Estimation
Mathematical programming (Math. Program.), 2019
Dimitris Bertsimas
Jourdain Lamperski
J. Pauphilet
154
14
0
25 Jun 2019
Learning partial correlation graphs and graphical models by covariance queries
Journal of machine learning research (JMLR), 2019
Gábor Lugosi
J. Truszkowski
Vasiliki Velona
Piotr Zwiernik
215
6
0
22 Jun 2019
On Testing Marginal versus Conditional Independence
F. R. Guo
Thomas S. Richardson
222
5
0
05 Jun 2019
Estimating and Inferring the Maximum Degree of Stimulus-Locked Time-Varying Brain Connectivity Networks
Biometrics (Biometrics), 2019
Kean Ming Tan
Junwei Lu
Tong Zhang
Han Liu
123
1
0
28 May 2019
Conditionally-additive-noise Models for Structure Learning
D. Chicharro
S. Panzeri
I. Shpitser
CML
154
4
0
20 May 2019
Learning Clique Forests
Guido Previde Massara
T. Aste
192
17
0
06 May 2019
Integer Programming for Learning Directed Acyclic Graphs from Continuous Data
Hasan Manzour
Simge Küçükyavuz
Ali Shojaie
CML
152
41
0
23 Apr 2019
Generalized Score Matching for Non-Negative Data
Shiqing Yu
Mathias Drton
Ali Shojaie
256
2
0
26 Dec 2018
Predictive Learning on Hidden Tree-Structured Ising Models
Konstantinos E. Nikolakakis
Dionysios S. Kalogerias
Anand D. Sarwate
429
14
0
11 Dec 2018
Graphical Models for Extremes
Sebastian Engelke
Adrien Hitz
317
125
0
04 Dec 2018
Joint Nonparametric Precision Matrix Estimation with Confounding
Sinong Geng
Mladen Kolar
Oluwasanmi Koyejo
182
9
0
16 Oct 2018
Algebraic Equivalence of Linear Structural Equation Models
T. V. Ommen
Joris M. Mooij
177
5
0
10 Jul 2018
On Causal Discovery with Equal Variance Assumption
Wenyu Chen
Mathias Drton
Y Samuel Wang
CML
347
96
0
09 Jul 2018
On the Properties of MVR Chain Graphs
Mohammad Ali Javidian
Marco Valtorta
314
6
0
09 Mar 2018
Inference in high-dimensional graphical models
Jana Janková
Sara van de Geer
221
68
0
25 Jan 2018
Causal Generative Neural Networks
Olivier Goudet
Diviyan Kalainathan
Philippe Caillou
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
BDL
CML
DRL
173
62
0
24 Nov 2017
Model-based Clustering with Sparse Covariance Matrices
Michael Fop
T. B. Murphy
Luca Scrucca
187
42
0
21 Nov 2017
Learning Functional Causal Models with Generative Neural Networks
Hugo Jair Escalante
Sergio Escalera
Xavier Baro
Isabelle M Guyon
Umut Güçlü
Marcel van Gerven
CML
BDL
358
110
0
15 Sep 2017
High-Dimensional Dependency Structure Learning for Physical Processes
Jamal Golmohammadi
I. Ebert‐Uphoff
Sijie He
Yi Deng
A. Banerjee
AI4CE
109
0
0
12 Sep 2017
Graphical Nonconvex Optimization for Optimal Estimation in Gaussian Graphical Models
International Conference on Machine Learning (ICML), 2017
Qiang Sun
Kean Ming Tan
Han Liu
Tong Zhang
154
8
0
04 Jun 2017
Learning Gaussian Graphical Models Using Discriminated Hub Graphical Lasso
Zerui Li
Jingtian Bai
Weilian Zhou
189
1
0
17 May 2017
A Review on Algorithms for Constraint-based Causal Discovery
Kui Yu
Jiuyong Li
Lin Liu
AI4TS
CML
140
22
0
12 Nov 2016
Computation of maximum likelihood estimates in cyclic structural equation models
Annals of Statistics (Ann. Stat.), 2016
Mathias Drton
C. Fox
Y Samuel Wang
239
18
0
11 Oct 2016
Previous
1
2
3
Next