ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.02647
  4. Cited By
Safe and Efficient Off-Policy Reinforcement Learning

Safe and Efficient Off-Policy Reinforcement Learning

8 June 2016
Rémi Munos
T. Stepleton
Anna Harutyunyan
Marc G. Bellemare
    OffRL
ArXivPDFHTML

Papers citing "Safe and Efficient Off-Policy Reinforcement Learning"

50 / 155 papers shown
Title
Efficiently Breaking the Curse of Horizon in Off-Policy Evaluation with
  Double Reinforcement Learning
Efficiently Breaking the Curse of Horizon in Off-Policy Evaluation with Double Reinforcement Learning
Nathan Kallus
Masatoshi Uehara
OffRL
26
88
0
12 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
25
53
0
25 Aug 2019
Double Reinforcement Learning for Efficient Off-Policy Evaluation in
  Markov Decision Processes
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
Nathan Kallus
Masatoshi Uehara
OffRL
41
183
0
22 Aug 2019
Modified Actor-Critics
Modified Actor-Critics
Erinc Merdivan
S. Hanke
M. Geist
24
2
0
02 Jul 2019
Learning the Arrow of Time
Learning the Arrow of Time
Nasim Rahaman
Steffen Wolf
Anirudh Goyal
Roman Remme
Yoshua Bengio
14
5
0
02 Jul 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
30
27
0
26 Jun 2019
When to use parametric models in reinforcement learning?
When to use parametric models in reinforcement learning?
H. V. Hasselt
Matteo Hessel
John Aslanides
46
189
0
12 Jun 2019
Importance Resampling for Off-policy Prediction
Importance Resampling for Off-policy Prediction
M. Schlegel
Wesley Chung
Daniel Graves
Jian Qian
Martha White
OffRL
14
41
0
11 Jun 2019
Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for
  Reinforcement Learning
Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning
Nathan Kallus
Masatoshi Uehara
OffRL
22
54
0
09 Jun 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
38
127
0
15 May 2019
Trajectory-Based Off-Policy Deep Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning
Andreas Doerr
Michael Volpp
Marc Toussaint
Sebastian Trimpe
Christian Daniel
OffRL
29
2
0
14 May 2019
P3O: Policy-on Policy-off Policy Optimization
P3O: Policy-on Policy-off Policy Optimization
Rasool Fakoor
Pratik Chaudhari
Alex Smola
OffRL
29
51
0
05 May 2019
Structured agents for physical construction
Structured agents for physical construction
V. Bapst
Alvaro Sanchez-Gonzalez
Carl Doersch
Kimberly L. Stachenfeld
Pushmeet Kohli
Peter W. Battaglia
Jessica B. Hamrick
AI4CE
30
99
0
05 Apr 2019
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy
  Critics
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
Denis Steckelmacher
Hélène Plisnier
D. Roijers
A. Nowé
OffRL
26
17
0
11 Mar 2019
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Diagnosing Bottlenecks in Deep Q-learning Algorithms
Justin Fu
Aviral Kumar
Matthew Soh
Sergey Levine
OffRL
19
141
0
26 Feb 2019
World Discovery Models
World Discovery Models
M. G. Azar
Bilal Piot
Bernardo Avila-Pires
Jean-Bastien Grill
Florent Altché
Rémi Munos
23
26
0
20 Feb 2019
Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs
Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs
Marek Petrik
R. Russel
27
61
0
20 Feb 2019
Emergent Coordination Through Competition
Emergent Coordination Through Competition
Siqi Liu
Guy Lever
J. Merel
S. Tunyasuvunakool
N. Heess
T. Graepel
47
149
0
19 Feb 2019
Value constrained model-free continuous control
Value constrained model-free continuous control
Steven Bohez
A. Abdolmaleki
Michael Neunert
J. Buchli
N. Heess
R. Hadsell
24
62
0
12 Feb 2019
Robust Temporal Difference Learning for Critical Domains
Robust Temporal Difference Learning for Critical Domains
R. Klíma
D. Bloembergen
Michael Kaisers
K. Tuyls
AAML
27
11
0
23 Jan 2019
Understanding Multi-Step Deep Reinforcement Learning: A Systematic Study
  of the DQN Target
Understanding Multi-Step Deep Reinforcement Learning: A Systematic Study of the DQN Target
J. F. Hernandez-Garcia
R. Sutton
27
61
0
22 Jan 2019
Imitation-Regularized Offline Learning
Imitation-Regularized Offline Learning
Yifei Ma
Yu Wang
Balakrishnan
Balakrishnan Narayanaswamy
OffRL
14
22
0
15 Jan 2019
TD-Regularized Actor-Critic Methods
TD-Regularized Actor-Critic Methods
Simone Parisi
Voot Tangkaratt
Jan Peters
Mohammad Emtiyaz Khan
OffRL
30
32
0
19 Dec 2018
Dopamine: A Research Framework for Deep Reinforcement Learning
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
28
276
0
14 Dec 2018
Top-K Off-Policy Correction for a REINFORCE Recommender System
Top-K Off-Policy Correction for a REINFORCE Recommender System
Minmin Chen
Alex Beutel
Paul Covington
Sagar Jain
Francois Belletti
Ed H. Chi
CML
OffRL
33
474
0
06 Dec 2018
Relative Entropy Regularized Policy Iteration
Relative Entropy Regularized Policy Iteration
A. Abdolmaleki
Jost Tobias Springenberg
Jonas Degrave
Steven Bohez
Yuval Tassa
Dan Belov
N. Heess
Martin Riedmiller
27
72
0
05 Dec 2018
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
Lars Buesing
T. Weber
Yori Zwols
S. Racanière
A. Guez
Jean-Baptiste Lespiau
N. Heess
CML
37
135
0
15 Nov 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
38
54
0
03 Nov 2018
Per-decision Multi-step Temporal Difference Learning with Control
  Variates
Per-decision Multi-step Temporal Difference Learning with Control Variates
Kristopher De Asis
R. Sutton
22
7
0
05 Jul 2018
RUDDER: Return Decomposition for Delayed Rewards
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
35
213
0
20 Jun 2018
Maximum a Posteriori Policy Optimisation
Maximum a Posteriori Policy Optimisation
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
48
471
0
14 Jun 2018
Qualitative Measurements of Policy Discrepancy for Return-Based Deep
  Q-Network
Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network
Wenjia Meng
Qian Zheng
L. Yang
Pengfei Li
Gang Pan
20
21
0
14 Jun 2018
Sample-Efficient Deep Reinforcement Learning via Episodic Backward
  Update
Sample-Efficient Deep Reinforcement Learning via Episodic Backward Update
Su Young Lee
Sung-Ik Choi
Sae-Young Chung
BDL
21
73
0
31 May 2018
Meta-Gradient Reinforcement Learning
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
53
324
0
24 May 2018
Data-Efficient Hierarchical Reinforcement Learning
Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
OffRL
68
797
0
21 May 2018
Constrained Policy Improvement for Safe and Efficient Reinforcement
  Learning
Constrained Policy Improvement for Safe and Efficient Reinforcement Learning
Elad Sarafian
Aviv Tamar
Sarit Kraus
OffRL
32
11
0
20 May 2018
Episodic Memory Deep Q-Networks
Episodic Memory Deep Q-Networks
Zichuan Lin
Tianqi Zhao
Guangwen Yang
Lintao Zhang
OffRL
24
85
0
19 May 2018
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and
  Request for Research
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
...
Joshua Tobin
Maciek Chociej
Peter Welinder
Vikash Kumar
Wojciech Zaremba
33
557
0
26 Feb 2018
Fully Decentralized Multi-Agent Reinforcement Learning with Networked
  Agents
Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents
Kaipeng Zhang
Zhuoran Yang
Han Liu
Tong Zhang
Tamer Basar
43
581
0
23 Feb 2018
More Robust Doubly Robust Off-policy Evaluation
More Robust Doubly Robust Off-policy Evaluation
Mehrdad Farajtabar
Yinlam Chow
Mohammad Ghavamzadeh
OffRL
15
264
0
10 Feb 2018
A Unified Approach for Multi-step Temporal-Difference Learning with
  Eligibility Traces in Reinforcement Learning
A Unified Approach for Multi-step Temporal-Difference Learning with Eligibility Traces in Reinforcement Learning
Long Yang
Minhao Shi
Qian Zheng
Wenjia Meng
Gang Pan
25
23
0
09 Feb 2018
IMPALA: Scalable Distributed Deep-RL with Importance Weighted
  Actor-Learner Architectures
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
63
1,578
0
05 Feb 2018
Pretraining Deep Actor-Critic Reinforcement Learning Algorithms With
  Expert Demonstrations
Pretraining Deep Actor-Critic Reinforcement Learning Algorithms With Expert Demonstrations
Xiaoqin Zhang
Huimin Ma
OffRL
43
38
0
31 Jan 2018
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
50
628
0
02 Nov 2017
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
37
544
0
18 Sep 2017
A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
65
2,780
0
19 Aug 2017
The Reactor: A fast and sample-efficient Actor-Critic agent for
  Reinforcement Learning
The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
A. Gruslys
Will Dabney
M. G. Azar
Bilal Piot
Marc G. Bellemare
Rémi Munos
21
58
0
15 Apr 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
41
300
0
22 Mar 2017
Using Options and Covariance Testing for Long Horizon Off-Policy Policy
  Evaluation
Using Options and Covariance Testing for Long Horizon Off-Policy Policy Evaluation
Z. Guo
Philip S. Thomas
Emma Brunskill
OffRL
21
2
0
09 Mar 2017
Neural Episodic Control
Neural Episodic Control
Alexander Pritzel
Benigno Uria
Sriram Srinivasan
A. Badia
Oriol Vinyals
Demis Hassabis
Daan Wierstra
Charles Blundell
OffRL
BDL
35
345
0
06 Mar 2017
Previous
1234
Next