ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04209
  4. Cited By
A Systematic Approach to Blocking Convolutional Neural Networks

A Systematic Approach to Blocking Convolutional Neural Networks

14 June 2016
Xuan S. Yang
Jing Pu
Blaine Rister
Nikhil Bhagdikar
Stephen Richardson
Shahar Kvatinsky
Jonathan Ragan-Kelley
A. Pedram
M. Horowitz
ArXivPDFHTML

Papers citing "A Systematic Approach to Blocking Convolutional Neural Networks"

13 / 13 papers shown
Title
AMULET: Adaptive Matrix-Multiplication-Like Tasks
AMULET: Adaptive Matrix-Multiplication-Like Tasks
Junyoung Kim
Kenneth Ross
Eric Sedlar
Lukas Stadler
13
1
0
12 May 2023
RT-RCG: Neural Network and Accelerator Search Towards Effective and
  Real-time ECG Reconstruction from Intracardiac Electrograms
RT-RCG: Neural Network and Accelerator Search Towards Effective and Real-time ECG Reconstruction from Intracardiac Electrograms
Yongan Zhang
Anton Banta
Yonggan Fu
M. John
A. Post
M. Razavi
Joseph R. Cavallaro
B. Aazhang
Yingyan Lin
31
4
0
04 Nov 2021
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators
Yonggan Fu
Yongan Zhang
Yang Zhang
David D. Cox
Yingyan Lin
MQ
58
18
0
11 Jun 2021
HW-NAS-Bench:Hardware-Aware Neural Architecture Search Benchmark
HW-NAS-Bench:Hardware-Aware Neural Architecture Search Benchmark
Chaojian Li
Zhongzhi Yu
Yonggan Fu
Yongan Zhang
Yang Katie Zhao
Haoran You
Qixuan Yu
Yue Wang
Yingyan Lin
53
108
0
19 Mar 2021
Hardware and Software Optimizations for Accelerating Deep Neural
  Networks: Survey of Current Trends, Challenges, and the Road Ahead
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Mohamed Bennai
BDL
64
140
0
21 Dec 2020
DNA: Differentiable Network-Accelerator Co-Search
DNA: Differentiable Network-Accelerator Co-Search
Yongan Zhang
Y. Fu
Weiwen Jiang
Chaojian Li
Haoran You
Meng Li
Vikas Chandra
Yingyan Lin
31
17
0
28 Oct 2020
Communication Lower Bound in Convolution Accelerators
Communication Lower Bound in Convolution Accelerators
Xiaoming Chen
Yinhe Han
Yu Wang
26
29
0
08 Nov 2019
eCNN: A Block-Based and Highly-Parallel CNN Accelerator for Edge
  Inference
eCNN: A Block-Based and Highly-Parallel CNN Accelerator for Edge Inference
Chao-Tsung Huang
Yu-Chun Ding
Huan-Ching Wang
Chi-Wen Weng
Kai-Ping Lin
Li-Wei Wang
Li-De Chen
16
42
0
13 Oct 2019
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Arthur Stoutchinin
Francesco Conti
Luca Benini
43
43
0
04 Feb 2019
Interstellar: Using Halide's Scheduling Language to Analyze DNN
  Accelerators
Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators
Xuan S. Yang
Mingyu Gao
Qiaoyi Liu
Jeff Setter
Jing Pu
...
Kaidi Cao
Heonjae Ha
Priyanka Raina
Christos Kozyrakis
M. Horowitz
32
226
0
10 Sep 2018
Supporting Very Large Models using Automatic Dataflow Graph Partitioning
Supporting Very Large Models using Automatic Dataflow Graph Partitioning
Minjie Wang
Chien-chin Huang
Jinyang Li
49
154
0
24 Jul 2018
Restructuring Batch Normalization to Accelerate CNN Training
Restructuring Batch Normalization to Accelerate CNN Training
Wonkyung Jung
Daejin Jung
and Byeongho Kim
Sunjung Lee
Wonjong Rhee
Jung Ho Ahn
24
62
0
04 Jul 2018
GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial
  Networks
GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks
Amir Yazdanbakhsh
Hajar Falahati
Philip J. Wolfe
K. Samadi
Nam Sung Kim
H. Esmaeilzadeh
30
71
0
10 May 2018
1