Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,491 papers shown
A Low Complexity Decentralized Neural Net with Centralized Equivalence using Layer-wise Learning
Xinyue Liang
Alireza M. Javid
Mikael Skoglund
Saikat Chatterjee
FedML
120
4
0
29 Sep 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
387
390
0
27 Sep 2020
An optimization problem for continuous submodular functions
Studia Universitatis Babeş-Bolyai. Mathematica (SUBM), 2020
L. Csirmaz
182
2
0
26 Sep 2020
Lagrangian and Hamiltonian Mechanics for Probabilities on the Statistical Manifold
International Journal of Geometric Methods in Modern Physics (IJGMMP) (IJGMMP), 2020
G. Chirco
Luigi Malagò
Giovanni Pistone
177
7
0
20 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
949
92
0
17 Sep 2020
A general framework for decentralized optimization with first-order methods
Proceedings of the IEEE (Proc. IEEE), 2020
Ran Xin
Shi Pu
Angelia Nedić
U. Khan
211
102
0
12 Sep 2020
A Markov Decision Process Approach to Active Meta Learning
Bingjia Wang
Alec Koppel
Vikram Krishnamurthy
77
1
0
10 Sep 2020
Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets
Reuben Dorent
Thomas C Booth
Wenqi Li
Carole H. Sudre
S. Kafiabadi
M. Jorge Cardoso
Sebastien Ourselin
Tom Vercauteren
193
28
0
08 Sep 2020
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
183
29
0
04 Sep 2020
Learning explanations that are hard to vary
International Conference on Learning Representations (ICLR), 2020
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
359
215
0
01 Sep 2020
Beyond variance reduction: Understanding the true impact of baselines on policy optimization
International Conference on Machine Learning (ICML), 2020
Wesley Chung
Valentin Thomas
Marlos C. Machado
Nicolas Le Roux
OffRL
422
31
0
31 Aug 2020
Efficient and Sparse Neural Networks by Pruning Weights in a Multiobjective Learning Approach
Computers & Operations Research (Comput. Oper. Res.), 2020
Malena Reiners
K. Klamroth
Michael Stiglmayr
146
20
0
31 Aug 2020
Wireless for Machine Learning
Henrik Hellström
J. M. B. D. Silva
Mohammad Mohammadi Amiri
Mingzhe Chen
Viktoria Fodor
H. Vincent Poor
Carlo Fischione
342
18
0
31 Aug 2020
Understanding and Detecting Convergence for Stochastic Gradient Descent with Momentum
Jerry Chee
Ping Li
140
13
0
27 Aug 2020
Optimization with learning-informed differential equation constraints and its applications
E S A I M: Control, Optimisation and Calculus of Variations (ESAIM: COCV), 2020
Guozhi Dong
M. Hintermueller
Kostas Papafitsoros
PINN
151
15
0
25 Aug 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
IEEE Transactions on Signal Processing (TSP), 2020
Tianyi Chen
Yuejiao Sun
W. Yin
231
91
0
25 Aug 2020
Channel-Directed Gradients for Optimization of Convolutional Neural Networks
Dong Lao
Peihao Zhu
Peter Wonka
G. Sundaramoorthi
199
3
0
25 Aug 2020
Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning
Steven L. Brunton
J. Nathan Kutz
Krithika Manohar
Aleksandr Aravkin
K. Morgansen
...
J. Buttrick
Jeffrey Poskin
Agnes Blom-Schieber
Thomas Hogan
Darren McDonald
AI4CE
204
180
0
24 Aug 2020
Improving predictions of Bayesian neural nets via local linearization
Alexander Immer
M. Korzepa
Matthias Bauer
BDL
282
11
0
19 Aug 2020
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
460
18
0
17 Aug 2020
Fast decentralized non-convex finite-sum optimization with recursive variance reduction
Ran Xin
U. Khan
S. Kar
459
48
0
17 Aug 2020
Privacy-Preserving Distributed Learning Framework for 6G Telecom Ecosystems
P. Safari
B. Shariati
J. Fischer
FedML
46
7
0
17 Aug 2020
Push-SAGA: A decentralized stochastic algorithm with variance reduction over directed graphs
Muhammad I. Qureshi
Ran Xin
S. Kar
U. Khan
338
29
0
13 Aug 2020
Byzantine Fault-Tolerant Distributed Machine Learning Using Stochastic Gradient Descent (SGD) and Norm-Based Comparative Gradient Elimination (CGE)
Nirupam Gupta
Shuo Liu
Nitin H. Vaidya
FedML
331
11
0
11 Aug 2020
An improved convergence analysis for decentralized online stochastic non-convex optimization
IEEE Transactions on Signal Processing (TSP), 2020
Ran Xin
U. Khan
S. Kar
346
119
0
10 Aug 2020
A Survey on Large-scale Machine Learning
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
194
144
0
10 Aug 2020
DINE: A Framework for Deep Incomplete Network Embedding
Ke Hou
Jiaying Liu
Yin Peng
Bo Xu
Ivan Lee
Xiwei Xu
117
3
0
09 Aug 2020
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
572
39
0
06 Aug 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
372
104
0
31 Jul 2020
HMCNAS: Neural Architecture Search using Hidden Markov Chains and Bayesian Optimization
Vasco Lopes
L. A. Alexandre
BDL
102
1
0
31 Jul 2020
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
332
8
0
29 Jul 2020
Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2020
Wentai Wu
Ligang He
Weiwei Lin
Rui Mao
209
96
0
28 Jul 2020
A Comparison of Optimization Algorithms for Deep Learning
International journal of pattern recognition and artificial intelligence (IJPRAI), 2020
Derya Soydaner
219
187
0
28 Jul 2020
Multi-Level Local SGD for Heterogeneous Hierarchical Networks
International Conference on Learning Representations (ICLR), 2020
Timothy Castiglia
Anirban Das
S. Patterson
216
12
0
27 Jul 2020
Binary Search and First Order Gradient Based Method for Stochastic Optimization
V. Pandey
ODL
121
0
0
27 Jul 2020
Train Like a (Var)Pro: Efficient Training of Neural Networks with Variable Projection
SIAM Journal on Mathematics of Data Science (SIMODS), 2020
Elizabeth Newman
Lars Ruthotto
Joseph L. Hart
B. V. B. Waanders
AAML
296
27
0
26 Jul 2020
Online Robust and Adaptive Learning from Data Streams
Shintaro Fukushima
Atsushi Nitanda
Kenji Yamanishi
282
3
0
23 Jul 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
294
25
0
22 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
134
5
0
21 Jul 2020
Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization
A. Berahas
Frank E. Curtis
Daniel P. Robinson
Baoyu Zhou
223
73
0
20 Jul 2020
Asynchronous Federated Learning with Reduced Number of Rounds and with Differential Privacy from Less Aggregated Gaussian Noise
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
224
30
0
17 Jul 2020
Incremental Without Replacement Sampling in Nonconvex Optimization
Journal of Optimization Theory and Applications (JOTA), 2020
Edouard Pauwels
336
5
0
15 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Neural Information Processing Systems (NeurIPS), 2020
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
712
1,758
0
15 Jul 2020
A Study of Gradient Variance in Deep Learning
Fartash Faghri
David Duvenaud
David J. Fleet
Jimmy Ba
FedML
ODL
202
31
0
09 Jul 2020
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma
Yi Zhou
120
4
0
07 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
290
62
0
07 Jul 2020
DS-Sync: Addressing Network Bottlenecks with Divide-and-Shuffle Synchronization for Distributed DNN Training
Weiyan Wang
Cengguang Zhang
Liu Yang
Kai Chen
Kun Tan
225
15
0
07 Jul 2020
Doubly infinite residual neural networks: a diffusion process approach
Stefano Peluchetti
Stefano Favaro
127
3
0
07 Jul 2020
Improving Chinese Segmentation-free Word Embedding With Unsupervised Association Measure
Yifan Zhang
Maohua Wang
Yongjian Huang
Qianrong Gu
103
0
0
05 Jul 2020
Accuracy-Efficiency Trade-Offs and Accountability in Distributed ML Systems
A. Feder Cooper
K. Levy
Christopher De Sa
446
25
0
04 Jul 2020
Previous
1
2
3
...
19
20
21
...
28
29
30
Next
Page 20 of 30
Page
of 30
Go