Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,491 papers shown
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
325
29
0
17 May 2020
S-ADDOPT: Decentralized stochastic first-order optimization over directed graphs
Muhammad I. Qureshi
Ran Xin
S. Kar
U. Khan
251
47
0
15 May 2020
Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection
Annals of Mathematics and Artificial Intelligence (AMAI), 2020
Seonho Park
George Adosoglou
P. Pardalos
DRL
UQCV
200
20
0
05 May 2020
Distributed Stochastic Non-Convex Optimization: Momentum-Based Variance Reduction
Prashant Khanduri
Pranay Sharma
Swatantra Kafle
Saikiran Bulusu
K. Rajawat
P. Varshney
219
6
0
01 May 2020
Dynamic backup workers for parallel machine learning
Chuan Xu
Giovanni Neglia
Nicola Sebastianelli
275
12
0
30 Apr 2020
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2020
Shigang Li
Tal Ben-Nun
Giorgi Nadiradze
Salvatore Di Girolamo
Nikoli Dryden
Dan Alistarh
Torsten Hoefler
422
15
0
30 Apr 2020
The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent
Xin-Yao Qian
Diego Klabjan
ODL
147
40
0
27 Apr 2020
Correct Me If You Can: Learning from Error Corrections and Markings
Julia Kreutzer
Nathaniel Berger
Stefan Riezler
174
19
0
23 Apr 2020
Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms
Yujing Ma
Florin Rusu
118
3
0
19 Apr 2020
Transfer learning in large-scale ocean bottom seismic wavefield reconstruction
SEG technical program expanded abstracts (STPEA), 2020
Mi Zhang
Ali Siahkoohi
Felix J. Herrmann
93
2
0
15 Apr 2020
On Learning Rates and Schrödinger Operators
Journal of machine learning research (JMLR), 2020
Bin Shi
Weijie J. Su
Sai Li
201
67
0
15 Apr 2020
Stochastic batch size for adaptive regularization in deep network optimization
Pattern Recognition (Pattern Recognit.), 2020
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
ODL
179
7
0
14 Apr 2020
Estimating a Brain Network Predictive of Stress and Genotype with Supervised Autoencoders
Austin Talbot
David B. Dunson
K. Dzirasa
David Carlson
121
5
0
10 Apr 2020
Straggler-aware Distributed Learning: Communication Computation Latency Trade-off
Entropy (Entropy), 2020
Emre Ozfatura
S. Ulukus
Deniz Gunduz
198
47
0
10 Apr 2020
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
Annual Conference Computational Learning Theory (COLT), 2020
Wenlong Mou
C. J. Li
Martin J. Wainwright
Peter L. Bartlett
Sai Li
225
87
0
09 Apr 2020
Deep Neural Network Learning with Second-Order Optimizers -- a Practical Study with a Stochastic Quasi-Gauss-Newton Method
C. Thiele
Mauricio Araya-Polo
D. Hohl
ODL
166
2
0
06 Apr 2020
Understanding Learning Dynamics for Neural Machine Translation
Conghui Zhu
Guanlin Li
Lemao Liu
Tiejun Zhao
Shuming Shi
110
3
0
05 Apr 2020
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
Mathematical programming (Math. Program.), 2020
V. Patel
297
25
0
01 Apr 2020
Concentrated Differentially Private and Utility Preserving Federated Learning
Rui Hu
Yuanxiong Guo
Yanmin Gong
FedML
255
12
0
30 Mar 2020
Differentially Private Federated Learning for Resource-Constrained Internet of Things
Rui Hu
Yuanxiong Guo
E. Ratazzi
Yanmin Gong
FedML
129
18
0
28 Mar 2020
A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to Balance Communication Overhead, Computational Complexity, and Convergence Rate
Naeimeh Omidvar
M. Maddah-ali
Hamed Mahdavi
ODL
99
3
0
27 Mar 2020
Convergence of Recursive Stochastic Algorithms using Wasserstein Divergence
SIAM Journal on Mathematics of Data Science (SIMODS), 2020
Abhishek Gupta
W. Haskell
146
5
0
25 Mar 2020
Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness
Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
202
24
0
24 Mar 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
International Conference on Machine Learning (ICML), 2020
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
552
593
0
23 Mar 2020
A termination criterion for stochastic gradient descent for binary classification
Sina Baghal
Courtney Paquette
S. Vavasis
126
0
0
23 Mar 2020
Resilience in Collaborative Optimization: Redundant and Independent Cost Functions
Nirupam Gupta
Nitin H. Vaidya
240
18
0
21 Mar 2020
A Hybrid Model-based and Data-driven Approach to Spectrum Sharing in mmWave Cellular Networks
IEEE Transactions on Cognitive Communications and Networking (IEEE TCCN), 2020
H. S. Ghadikolaei
H. Ghauch
Gábor Fodor
Mikael Skoglund
Carlo Fischione
81
16
0
19 Mar 2020
Block Layer Decomposition schemes for training Deep Neural Networks
Journal of Global Optimization (J. Glob. Optim.), 2019
L. Palagi
R. Seccia
127
6
0
18 Mar 2020
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
International Conference on Machine Learning (ICML), 2020
Alnur Ali
Guang Cheng
Robert Tibshirani
178
81
0
17 Mar 2020
Dynamic transformation of prior knowledge into Bayesian models for data streams
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Tran Xuan Bach
N. Anh
Ngo Van Linh
Khoat Than
348
11
0
13 Mar 2020
Truncated Inference for Latent Variable Optimization Problems: Application to Robust Estimation and Learning
European Conference on Computer Vision (ECCV), 2020
Christopher Zach
Huu Le
157
4
0
12 Mar 2020
Machine Learning on Volatile Instances
IEEE Conference on Computer Communications (INFOCOM), 2020
Xiaoxi Zhang
Jianyu Wang
Gauri Joshi
Carlee Joe-Wong
175
25
0
12 Mar 2020
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
International Conference on Machine Learning (ICML), 2020
Sudeep Salgia
Qing Zhao
Sattar Vakili
190
2
0
11 Mar 2020
Communication-efficient Variance-reduced Stochastic Gradient Descent
IFAC-PapersOnLine (IFAC-PapersOnLine), 2020
H. S. Ghadikolaei
Sindri Magnússon
126
3
0
10 Mar 2020
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
Shaoshuai Shi
Wei Wang
Yue Liu
Xiaowen Chu
249
54
0
10 Mar 2020
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
International Conference on Machine Learning (ICML), 2020
Mahmoud Assran
Michael G. Rabbat
249
69
0
27 Feb 2020
A Deep Unsupervised Feature Learning Spiking Neural Network with Binarized Classification Layers for EMNIST Classification using SpykeFlow
IEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2020
Ruthvik Vaila
John N. Chiasson
V. Saxena
358
27
0
26 Feb 2020
Disentangling Adaptive Gradient Methods from Learning Rates
Naman Agarwal
Rohan Anil
Elad Hazan
Tomer Koren
Cyril Zhang
269
42
0
26 Feb 2020
PrIU: A Provenance-Based Approach for Incrementally Updating Regression Models
Yinjun Wu
V. Tannen
S. Davidson
138
41
0
26 Feb 2020
Non-asymptotic bounds for stochastic optimization with biased noisy gradient oracles
IEEE Transactions on Automatic Control (TAC), 2020
Nirav Bhavsar
Prashanth L.A.
151
13
0
26 Feb 2020
LASG: Lazily Aggregated Stochastic Gradients for Communication-Efficient Distributed Learning
Tianyi Chen
Yuejiao Sun
W. Yin
FedML
143
14
0
26 Feb 2020
Device Heterogeneity in Federated Learning: A Superquantile Approach
Machine-mediated learning (ML), 2020
Yassine Laguel
Krishna Pillutla
J. Malick
Zaïd Harchaoui
FedML
213
30
0
25 Feb 2020
Adaptive Distributed Stochastic Gradient Descent for Minimizing Delay in the Presence of Stragglers
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020
Serge Kas Hanna
Rawad Bitar
Parimal Parag
Venkateswara Dasari
S. E. Rouayheb
187
17
0
25 Feb 2020
Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of DNNs
European Conference on Computer Vision (ECCV), 2020
Lei Huang
Jie Qin
Li Liu
Fan Zhu
Ling Shao
AI4CE
262
12
0
25 Feb 2020
Can speed up the convergence rate of stochastic gradient methods to
O
(
1
/
k
2
)
\mathcal{O}(1/k^2)
O
(
1/
k
2
)
by a gradient averaging strategy?
Xin Xu
Xiaopeng Luo
93
1
0
25 Feb 2020
Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
SIAM Journal of Imaging Sciences (SIIMS), 2020
Bao Wang
T. Nguyen
Andrea L. Bertozzi
Richard G. Baraniuk
Stanley J. Osher
ODL
194
54
0
24 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Nicolas Loizou
Sharan Vaswani
I. Laradji
Damien Scieur
384
215
0
24 Feb 2020
The Two Regimes of Deep Network Training
Guillaume Leclerc
Aleksander Madry
200
49
0
24 Feb 2020
Periodic Q-Learning
Conference on Learning for Dynamics & Control (L4DC), 2020
Dong-hwan Lee
Niao He
OOD
118
14
0
23 Feb 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
International Conference on Machine Learning (ICML), 2020
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
202
22
0
21 Feb 2020
Previous
1
2
3
...
21
22
23
...
28
29
30
Next
Page 22 of 30
Page
of 30
Go