Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Adaptive Ensemble of Classifiers with Regularization for Imbalanced Data Classification
Chen Wang
Qin Yu
Kai Zhou
D. Hui
Xiaofeng Gong
Ruisen Luo
18
22
0
09 Aug 2019
Bias of Homotopic Gradient Descent for the Hinge Loss
Denali Molitor
Deanna Needell
Rachel A. Ward
6
5
0
26 Jul 2019
Interactive Lungs Auscultation with Reinforcement Learning Agent
Tomasz Grzywalski
Riccardo Belluzzo
S. Drgas
A. Cwalinska
Honorata Hafke-Dys
LM&MA
13
3
0
25 Jul 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
18
8
0
24 Jul 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
C. Caramanis
Sanjay Shakkottai
36
3
0
23 Jul 2019
An introduction to decentralized stochastic optimization with gradient tracking
Ran Xin
S. Kar
U. Khan
6
10
0
23 Jul 2019
Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography
Harbir Antil
Z. Di
R. Khatri
27
49
0
22 Jul 2019
Speeding Up Iterative Closest Point Using Stochastic Gradient Descent
F. A. Maken
F. Ramos
Lionel Ott
3DPC
14
13
0
22 Jul 2019
Adaptive Weight Decay for Deep Neural Networks
Kensuke Nakamura
Byung-Woo Hong
6
41
0
21 Jul 2019
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
18
48
0
21 Jul 2019
An Evolutionary Algorithm of Linear complexity: Application to Training of Deep Neural Networks
S. I. Valdez
A. R. Domínguez
ODL
16
1
0
12 Jul 2019
Adaptive Deep Learning for High-Dimensional Hamilton-Jacobi-Bellman Equations
Tenavi Nakamura-Zimmerer
Q. Gong
W. Kang
18
132
0
11 Jul 2019
Spatiotemporal Local Propagation
Alessandro Betti
Marco Gori
11
1
0
11 Jul 2019
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Suyun Liu
Luis Nunes Vicente
25
71
0
10 Jul 2019
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
24
62
0
09 Jul 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
26
112
0
09 Jul 2019
Learning joint lesion and tissue segmentation from task-specific hetero-modal datasets
R. Dorent
Wenqi Li
J. Ekanayake
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
23
4
0
07 Jul 2019
ReLU Networks as Surrogate Models in Mixed-Integer Linear Programs
B. Grimstad
H. Andersson
21
139
0
06 Jul 2019
Precision annealing Monte Carlo methods for statistical data assimilation and machine learning
Zheng Fang
Adrian S. Wong
Kangbo Hao
Alexander J. A. Ty
H. Abarbanel
14
1
0
06 Jul 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
11
63
0
03 Jul 2019
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
6
35
0
03 Jul 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
11
30
0
02 Jul 2019
Network-accelerated Distributed Machine Learning Using MLFabric
Raajay Viswanathan
Aditya Akella
AI4CE
11
4
0
30 Jun 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
29
15
0
27 Jun 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
17
3
0
22 Jun 2019
Fully Decoupled Neural Network Learning Using Delayed Gradients
Huiping Zhuang
Yi Wang
Qinglai Liu
Shuai Zhang
Zhiping Lin
FedML
25
30
0
21 Jun 2019
Accelerating Mini-batch SARAH by Step Size Rules
Zhuang Yang
Zengping Chen
Cheng-Yu Wang
10
15
0
20 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
549
0
17 Jun 2019
Optimizing Pipelined Computation and Communication for Latency-Constrained Edge Learning
N. Skatchkovsky
Osvaldo Simeone
8
17
0
11 Jun 2019
Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training
Paul Grigas
Alfonso Lobos
Nathan Vermeersch
24
5
0
09 Jun 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
56
240
0
06 Jun 2019
Efficient Subsampled Gauss-Newton and Natural Gradient Methods for Training Neural Networks
Yi Ren
D. Goldfarb
19
35
0
05 Jun 2019
On the Convergence of SARAH and Beyond
Bingcong Li
Meng Ma
G. Giannakis
33
26
0
05 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
42
122
0
05 Jun 2019
The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at Data Analysis
Cynthia Rudin
David Carlson
HAI
30
34
0
04 Jun 2019
A Generic Acceleration Framework for Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
18
43
0
03 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
22
14
0
30 May 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
21
209
0
29 May 2019
An Inertial Newton Algorithm for Deep Learning
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
PINN
ODL
28
62
0
29 May 2019
Where is the Information in a Deep Neural Network?
Alessandro Achille
Giovanni Paolini
Stefano Soatto
24
81
0
29 May 2019
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
14
35
0
28 May 2019
Recursive Estimation for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
25
32
0
28 May 2019
Finite-Sample Analysis of Nonlinear Stochastic Approximation with Applications in Reinforcement Learning
Zaiwei Chen
Sheng Zhang
Thinh T. Doan
John-Paul Clarke
S. T. Maguluri
17
58
0
27 May 2019
Robustness of accelerated first-order algorithms for strongly convex optimization problems
Hesameddin Mohammadi
Meisam Razaviyayn
M. Jovanović
17
41
0
27 May 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
28
25
0
24 May 2019
Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models: Extension
Yunfei Teng
Wenbo Gao
F. Chalus
A. Choromańska
D. Goldfarb
Adrian Weller
32
12
0
24 May 2019
Blockwise Adaptivity: Faster Training and Better Generalization in Deep Learning
Shuai Zheng
James T. Kwok
ODL
19
5
0
23 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
29
159
0
23 May 2019
Adaptive norms for deep learning with regularized Newton methods
Jonas Köhler
Leonard Adolphs
Aurelien Lucchi
ODL
9
11
0
22 May 2019
Previous
1
2
3
...
22
23
24
...
27
28
29
Next