Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Jingjing Zhang
Osvaldo Simeone
18
31
0
22 May 2019
Sequential training algorithm for neural networks
Jongrae Kim
22
1
0
17 May 2019
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
17
21
0
16 May 2019
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
42
729
0
16 May 2019
Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition
Anil R. Yelundur
Vineet Chaoji
Bamdev Mishra
11
7
0
15 May 2019
A Stochastic Gradient Method with Biased Estimation for Faster Nonconvex Optimization
Jia Bi
S. Gunn
25
3
0
13 May 2019
Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints
Mengtian Li
Ersin Yumer
Deva Ramanan
14
46
0
12 May 2019
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
Rong Jin
23
50
0
10 May 2019
The sharp, the flat and the shallow: Can weakly interacting agents learn to escape bad minima?
N. Kantas
P. Parpas
G. Pavliotis
ODL
21
8
0
10 May 2019
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
Jiong Zhang
Hsiang-Fu Yu
Inderjit S. Dhillon
24
26
0
08 May 2019
Sparse multiresolution representations with adaptive kernels
Maria Peifer
Luiz F. O. Chamon
Santiago Paternain
Alejandro Ribeiro
11
4
0
07 May 2019
Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
8
27
0
07 May 2019
An Adaptive Remote Stochastic Gradient Method for Training Neural Networks
Yushu Chen
Hao Jing
Wenlai Zhao
Zhiqiang Liu
Haohuan Fu
Lián Qiao
Wei Xue
Guangwen Yang
ODL
27
2
0
04 May 2019
New optimization algorithms for neural network training using operator splitting techniques
C. Alecsa
Titus Pinta
Imre Boros
17
8
0
29 Apr 2019
Target-Based Temporal Difference Learning
Donghwan Lee
Niao He
OOD
16
31
0
24 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Generalizing from a Few Examples: A Survey on Few-Shot Learning
Yaqing Wang
Quanming Yao
James T. Kwok
L. Ni
39
1,793
0
10 Apr 2019
On the approximation of the solution of partial differential equations by artificial neural networks trained by a multilevel Levenberg-Marquardt method
H. Calandra
Serge Gratton
E. Riccietti
X. Vasseur
16
7
0
09 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
28
30
0
28 Mar 2019
OverSketched Newton: Fast Convex Optimization for Serverless Systems
Vipul Gupta
S. Kadhe
T. Courtade
Michael W. Mahoney
Kannan Ramchandran
19
33
0
21 Mar 2019
Noisy Accelerated Power Method for Eigenproblems with Applications
Vien V. Mai
M. Johansson
9
3
0
20 Mar 2019
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
Frederik Heber
Zofia Trstanova
B. Leimkuhler
22
0
0
20 Mar 2019
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
A. Hubin
G. Storvik
UQCV
BDL
12
11
0
18 Mar 2019
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
Fan Zhou
Guojing Cong
19
8
0
12 Mar 2019
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
Arman Rahbar
Ashkan Panahi
M. Chehreghani
Devdatt Dubhashi
Hamid Krim
43
0
0
09 Mar 2019
SGD without Replacement: Sharper Rates for General Smooth Convex Functions
Prateek Jain
Dheeraj M. Nagaraj
Praneeth Netrapalli
19
87
0
04 Mar 2019
Time-Delay Momentum: A Regularization Perspective on the Convergence and Generalization of Stochastic Momentum for Deep Learning
Ziming Zhang
Wenju Xu
Alan Sullivan
43
1
0
02 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
23
66
0
19 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
16
139
0
15 Feb 2019
Forward-backward-forward methods with variance reduction for stochastic variational inequalities
R. Boț
P. Mertikopoulos
Mathias Staudigl
P. Vuong
11
22
0
09 Feb 2019
Predict Globally, Correct Locally: Parallel-in-Time Optimal Control of Neural Networks
P. Parpas
Corey Muir
OOD
13
12
0
07 Feb 2019
Negative eigenvalues of the Hessian in deep neural networks
Guillaume Alain
Nicolas Le Roux
Pierre-Antoine Manzagol
19
42
0
06 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
26
3
0
04 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
14
60
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
21
115
0
03 Feb 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
10
90
0
02 Feb 2019
Multilevel Monte Carlo Variational Inference
Masahiro Fujisawa
Issei Sato
19
10
0
01 Feb 2019
MgNet: A Unified Framework of Multigrid and Convolutional Neural Network
Juncai He
Jinchao Xu
16
51
0
29 Jan 2019
Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning
Nicolas García Trillos
Zachary T. Kaplan
D. Sanz-Alonso
ODL
20
3
0
29 Jan 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
24
40
0
28 Jan 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
34
376
0
27 Jan 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
32
44
0
25 Jan 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
11
34
0
24 Jan 2019
To Relieve Your Headache of Training an MRF, Take AdVIL
Chongxuan Li
Chao Du
Kun Xu
Max Welling
Jun Zhu
Bo Zhang
9
9
0
24 Jan 2019
Large-Batch Training for LSTM and Beyond
Yang You
Jonathan Hseu
Chris Ying
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
23
89
0
24 Jan 2019
Trajectory Normalized Gradients for Distributed Optimization
Jianqiao Wangni
Ke Li
Jianbo Shi
Jitendra Malik
19
2
0
24 Jan 2019
Decoupled Greedy Learning of CNNs
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
8
114
0
23 Jan 2019
Finite-Sum Smooth Optimization with SARAH
Lam M. Nguyen
Marten van Dijk
Dzung Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
28
22
0
22 Jan 2019
Previous
1
2
3
...
23
24
25
...
27
28
29
Next