Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,491 papers shown
Sparsification as a Remedy for Staleness in Distributed Asynchronous SGD
Rosa Candela
Giulio Franzese
Maurizio Filippone
Pietro Michiardi
229
1
0
21 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Mathematical programming (Math. Program.), 2019
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
214
36
0
21 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
289
54
0
21 Oct 2019
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
Yasaman Esfandiari
Aditya Balu
K. Ebrahimi
Umesh Vaidya
N. Elia
Soumik Sarkar
OOD
188
3
0
18 Oct 2019
Robust Learning Rate Selection for Stochastic Optimization via Splitting Diagnostic
Matteo Sordello
Niccolò Dalmasso
Hangfeng He
Weijie Su
272
7
0
18 Oct 2019
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
191
10
0
18 Oct 2019
Improving the convergence of SGD through adaptive batch sizes
Scott Sievert
Zachary B. Charles
ODL
231
10
0
18 Oct 2019
Error Lower Bounds of Constant Step-size Stochastic Gradient Descent
Zhiyan Ding
Yiding Chen
Qin Li
Xiaojin Zhu
121
4
0
18 Oct 2019
Adaptive Step Sizes in Variance Reduction via Regularization
Bingcong Li
G. Giannakis
161
5
0
15 Oct 2019
Predicting dynamical system evolution with residual neural networks
Keldysh Institute Preprints (KIP), 2019
Artem Chashchin
M. Botchev
Ivan Oseledets
G. Ovchinnikov
AI4TS
AI4CE
147
4
0
11 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
155
5
0
09 Oct 2019
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
International Conference on Machine Learning (ICML), 2019
Yoel Drori
Shigehito Shimizu
266
70
0
04 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
136
2
0
03 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
International Conference on Learning Representations (ICLR), 2019
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
383
217
0
01 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Mathematical programming (Math. Program.), 2019
Jérôme Bolte
Edouard Pauwels
502
157
0
23 Sep 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Computer Methods in Applied Mechanics and Engineering (CMAME), 2019
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
297
533
0
23 Sep 2019
Human Position Detection & Tracking with On-robot Time-of-Flight Laser Ranging Sensors
Sarthak Arora
Shitij Kumar
F. Sahin
77
2
0
21 Sep 2019
From Server-Based to Client-Based Machine Learning: A Comprehensive Survey
ACM Computing Surveys (ACM CSUR), 2019
Renjie Gu
Chaoyue Niu
Fan Wu
Guihai Chen
Chun Hu
Chengfei Lyu
Zhihua Wu
257
29
0
18 Sep 2019
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
256
11
0
15 Sep 2019
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Neural Information Processing Systems (NeurIPS), 2019
Qian Yang
Zhouyuan Huo
Wenlin Wang
Heng-Chiao Huang
Lawrence Carin
145
9
0
14 Sep 2019
Shapley Interpretation and Activation in Neural Networks
Yadong Li
Xin Cui
TDI
FAtt
LLMSV
169
4
0
13 Sep 2019
Lightweight Task Offloading Exploiting MPI Wait Times for Parallel Adaptive Mesh Refinement
Philipp Samfass
T. Weinzierl
D. E. Charrier
M. Bader
46
2
0
13 Sep 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
169
16
0
11 Sep 2019
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
180
45
0
09 Sep 2019
Communication-Censored Distributed Stochastic Gradient Descent
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2019
Weiyu Li
Tianyi Chen
Liping Li
Zhaoxian Wu
Qing Ling
166
22
0
09 Sep 2019
Distributed Deep Learning with Event-Triggered Communication
Jemin George
Prudhvi K. Gurram
168
16
0
08 Sep 2019
Distributed Training of Embeddings using Graph Analytics
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019
G. Gill
Roshan Dathathri
Saeed Maleki
Madan Musuvathi
Todd Mytkowicz
Olli Saarikivi The University of Texas at Austin
GNN
210
1
0
08 Sep 2019
Decentralized Stochastic Gradient Tracking for Non-convex Empirical Risk Minimization
Jiaqi Zhang
Keyou You
363
18
0
06 Sep 2019
Deep Convolutional Networks in System Identification
IEEE Conference on Decision and Control (CDC), 2019
Carl R. Andersson
Antônio H. Ribeiro
K. Tiels
Niklas Wahlström
Thomas B. Schon
190
59
0
04 Sep 2019
LCA: Loss Change Allocation for Neural Network Training
Neural Information Processing Systems (NeurIPS), 2019
Janice Lan
Rosanne Liu
Hattie Zhou
J. Yosinski
199
27
0
03 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
161
25
0
03 Sep 2019
Linear Convergence of Adaptive Stochastic Gradient Descent
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Yuege Xie
Xiaoxia Wu
Rachel A. Ward
199
51
0
28 Aug 2019
Almost Tune-Free Variance Reduction
International Conference on Machine Learning (ICML), 2019
Bingcong Li
Lingda Wang
G. Giannakis
164
20
0
25 Aug 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Journal of Mathematical Imaging and Vision (JMIV), 2019
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
318
24
0
15 Aug 2019
A review on Deep Reinforcement Learning for Fluid Mechanics
Computers & Fluids (Comput. Fluids), 2019
Paul Garnier
J. Viquerat
Jean Rabault
A. Larcher
A. Kuhnle
E. Hachem
AI4CE
296
292
0
12 Aug 2019
Adaptive Ensemble of Classifiers with Regularization for Imbalanced Data Classification
Information Fusion (Inf. Fusion), 2019
Chen Wang
Qin Yu
Kai Zhou
D. Hui
Xiaofeng Gong
Ruisen Luo
334
24
0
09 Aug 2019
Bias of Homotopic Gradient Descent for the Hinge Loss
Applied Mathematics and Optimization (AMO), 2019
Denali Molitor
Deanna Needell
Rachel A. Ward
121
6
0
26 Jul 2019
Interactive Lungs Auscultation with Reinforcement Learning Agent
International Conference on Agents and Artificial Intelligence (ICAART), 2019
Tomasz Grzywalski
Riccardo Belluzzo
S. Drgas
A. Cwalinska
Honorata Hafke-Dys
LM&MA
60
3
0
25 Jul 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Chaos (Chaos), 2019
Antoine Blanchard
T. Sapsis
292
8
0
24 Jul 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Neural Information Processing Systems (NeurIPS), 2019
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
Constantine Caramanis
Sanjay Shakkottai
322
3
0
23 Jul 2019
An introduction to decentralized stochastic optimization with gradient tracking
Ran Xin
S. Kar
U. Khan
282
10
0
23 Jul 2019
Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography
Inverse Problems (IP), 2019
Harbir Antil
Z. Di
R. Khatri
143
55
0
22 Jul 2019
Speeding Up Iterative Closest Point Using Stochastic Gradient Descent
IEEE International Conference on Robotics and Automation (ICRA), 2019
F. A. Maken
F. Ramos
Lionel Ott
3DPC
65
15
0
22 Jul 2019
Adaptive Weight Decay for Deep Neural Networks
IEEE Access (IEEE Access), 2019
Kensuke Nakamura
Byung-Woo Hong
179
50
0
21 Jul 2019
Techniques for Automated Machine Learning
SIGKDD Explorations (SIGKDD Explor.), 2019
Yi-Wei Chen
Qingquan Song
Helen Zhou
157
61
0
21 Jul 2019
An Evolutionary Algorithm of Linear complexity: Application to Training of Deep Neural Networks
S. I. Valdez
A. R. Domínguez
ODL
69
1
0
12 Jul 2019
Adaptive Deep Learning for High-Dimensional Hamilton-Jacobi-Bellman Equations
SIAM Journal on Scientific Computing (SISC), 2019
Tenavi Nakamura-Zimmerer
Q. Gong
W. Kang
336
157
0
11 Jul 2019
Spatiotemporal Local Propagation
Alessandro Betti
Marco Gori
41
1
0
11 Jul 2019
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Annals of Operations Research (Ann. Oper. Res.), 2019
Suyun Liu
Luis Nunes Vicente
354
88
0
10 Jul 2019
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Kenji Kawaguchi
Haihao Lu
ODL
537
74
0
09 Jul 2019
Previous
1
2
3
...
23
24
25
...
28
29
30
Next
Page 24 of 30
Page
of 30
Go