Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Truncated Non-Uniform Quantization for Distributed SGD
Guangfeng Yan
Tan Li
Yuanzhang Xiao
Congduan Li
Linqi Song
MQ
17
0
0
02 Feb 2024
Towards Quantum-Safe Federated Learning via Homomorphic Encryption: Learning with Gradients
Guangfeng Yan
Shanxiang Lyu
Hanxu Hou
Zhiyong Zheng
Linqi Song
FedML
8
1
0
02 Feb 2024
HawkEye: Advancing Robust Regression with Bounded, Smooth, and Insensitive Loss Function
M. Akhtar
Muhammad Tanveer
Mohd. Arshad
18
4
0
30 Jan 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
36
0
0
30 Jan 2024
Low-resolution Prior Equilibrium Network for CT Reconstruction
Yijie Yang
Qifeng Gao
Yuping Duan
32
0
0
28 Jan 2024
Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning
Chenyu Zhang
Han Wang
Aritra Mitra
James Anderson
37
18
0
27 Jan 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
32
0
0
24 Jan 2024
How to Collaborate: Towards Maximizing the Generalization Performance in Cross-Silo Federated Learning
Yuchang Sun
Marios Kountouris
Jun Zhang
FedML
45
2
0
24 Jan 2024
Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving
O
(
1
/
k
)
O(1/k)
O
(
1/
k
)
Finite-Sample Complexity
Thinh T. Doan
32
7
0
23 Jan 2024
Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks
Jie Hu
Vishwaraj Doshi
Do Young Eun
55
2
0
18 Jan 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
38
4
0
17 Jan 2024
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
Siddharth Krishna Kumar
AAML
26
2
0
16 Jan 2024
Stochastic optimization with arbitrary recurrent data sampling
William G. Powell
Hanbaek Lyu
37
0
0
15 Jan 2024
Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy
Chengli Tan
Jiangshe Zhang
Junmin Liu
Yicheng Wang
Yunda Hao
AAML
34
1
0
14 Jan 2024
Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization
A. F. M. Saif
Xiaodong Cui
Han Shen
Songtao Lu
Brian Kingsbury
Tianyi Chen
37
3
0
13 Jan 2024
Differential Equations for Continuous-Time Deep Learning
Lars Ruthotto
AI4TS
AI4CE
SyDa
BDL
37
7
0
08 Jan 2024
A Robbins--Monro Sequence That Can Exploit Prior Information For Faster Convergence
Siwei Liu
Ke Ma
Stephan M. Goetz
19
1
0
06 Jan 2024
On the numerical reliability of nonsmooth autodiff: a MaxPool case study
Ryan Boustany
16
0
0
05 Jan 2024
FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning
Jian Li
Yong Liu
Wei Wang
Haoran Wu
Weiping Wang
FedML
36
2
0
05 Jan 2024
Online Continual Domain Adaptation for Semantic Image Segmentation Using Internal Representations
Serban Stan
Mohammad Rostami
OOD
CLL
36
0
0
02 Jan 2024
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Farshed Abdukhakimov
Chulu Xiang
Dmitry Kamzolov
Robert Mansel Gower
Martin Takáč
43
2
0
28 Dec 2023
ATE-SG: Alternate Through the Epochs Stochastic Gradient for Multi-Task Neural Networks
Stefania Bellavia
Francesco Della Santa
Alessandra Papini
41
0
0
26 Dec 2023
Parallel Trust-Region Approaches in Neural Network Training: Beyond Traditional Methods
Ken Trotti
Samuel A. Cruz Alegría
Alena Kopanicáková
Rolf Krause
26
0
0
21 Dec 2023
Continual Learning: Forget-free Winning Subnetworks for Video Representations
Haeyong Kang
Jaehong Yoon
Sung Ju Hwang
Chang D. Yoo
CLL
39
2
0
19 Dec 2023
DePRL: Achieving Linear Convergence Speedup in Personalized Decentralized Learning with Shared Representations
Guojun Xiong
Gang Yan
Shiqiang Wang
Jian Li
42
5
0
17 Dec 2023
Physics-Informed Deep Learning of Rate-and-State Fault Friction
Cody Rucker
Brittany A. Erickson
PINN
AI4CE
13
5
0
14 Dec 2023
Layered Randomized Quantization for Communication-Efficient and Privacy-Preserving Distributed Learning
Guangfeng Yan
Tan Li
Tian-Shing Lan
Kui Wu
Linqi Song
19
6
0
12 Dec 2023
An
L
D
L
T
LDL^T
L
D
L
T
Trust-Region Quasi-Newton Method
John Brust
Philip E. Gill
17
0
0
11 Dec 2023
ELSA: Partial Weight Freezing for Overhead-Free Sparse Network Deployment
Paniz Halvachi
Alexandra Peste
Dan Alistarh
Christoph H. Lampert
25
0
0
11 Dec 2023
Fake It Till Make It: Federated Learning with Consensus-Oriented Generation
Rui Ye
Yaxin Du
Zhenyang Ni
Siheng Chen
Yanfeng Wang
FedML
36
5
0
10 Dec 2023
TaskMet: Task-Driven Metric Learning for Model Learning
Dishank Bansal
Ricky T. Q. Chen
Mustafa Mukadam
Brandon Amos
FedML
28
10
0
08 Dec 2023
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
Rajeeva Laxman Karandikar
M. Vidyasagar
25
8
0
05 Dec 2023
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu
Xiao Li
Andre Milzarek
39
2
0
02 Dec 2023
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni
Nicklas Werge
ODL
40
3
0
29 Nov 2023
Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent
Frederik Köhne
Leonie Kreis
Anton Schiela
Roland A. Herzog
21
1
0
28 Nov 2023
Sensitivity-Based Layer Insertion for Residual and Feedforward Neural Networks
Evelyn Herberg
Roland A. Herzog
Frederik Köhne
Leonie Kreis
Anton Schiela
14
0
0
27 Nov 2023
Transformer-based Named Entity Recognition in Construction Supply Chain Risk Management in Australia
Milad Baghalzadeh Shishehgarkhaneh
R. Moehler
Yihai Fang
Amer A. Hijazi
Hamed Aboutorab
36
6
0
23 Nov 2023
Soft Random Sampling: A Theoretical and Empirical Analysis
Xiaodong Cui
Ashish R. Mittal
Songtao Lu
Wei Zhang
G. Saon
Brian Kingsbury
48
1
0
21 Nov 2023
Infinite forecast combinations based on Dirichlet process
Yinuo Ren
Feng Li
Yanfei Kang
Jue Wang
AI4TS
27
0
0
21 Nov 2023
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
45
2
0
20 Nov 2023
Using Stochastic Gradient Descent to Smooth Nonconvex Functions: Analysis of Implicit Graduated Optimization with Optimal Noise Scheduling
Naoki Sato
Hideaki Iiduka
25
3
0
15 Nov 2023
Non-Uniform Smoothness for Gradient Descent
A. Berahas
Lindon Roberts
Fred Roosta
40
3
0
15 Nov 2023
Robust softmax aggregation on blockchain based federated learning with convergence guarantee
Huiyu Wu
Diego Klabjan
FedML
38
2
0
13 Nov 2023
Differentiable Cutting-plane Layers for Mixed-integer Linear Optimization
Gabriele Dragotto
Stefan Clarke
J. F. Fisac
Bartolomeo Stellato
47
5
0
06 Nov 2023
Parameter-Agnostic Optimization under Relaxed Smoothness
Florian Hübler
Junchi Yang
Xiang Li
Niao He
34
14
0
06 Nov 2023
Signal Processing Meets SGD: From Momentum to Filter
Zhipeng Yao
Guisong Chang
Jiaqi Zhang
Qi Zhang
Dazhou Li
Yu Zhang
ODL
37
0
0
06 Nov 2023
High Probability Convergence of Adam Under Unbounded Gradients and Affine Variance Noise
Yusu Hong
Junhong Lin
30
8
0
03 Nov 2023
Learning to optimize by multi-gradient for multi-objective optimization
Linxi Yang
Xinmin Yang
L. Tang
18
1
0
01 Nov 2023
Information-Theoretic Trust Regions for Stochastic Gradient-Based Optimization
Philipp Dahlinger
P. Becker
Maximilian Hüttenrauch
Gerhard Neumann
15
0
0
31 Oct 2023
High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise
Aleksandar Armacki
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
39
5
0
28 Oct 2023
Previous
1
2
3
4
5
6
...
27
28
29
Next