ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.02192
  4. Cited By
Playing for Data: Ground Truth from Computer Games

Playing for Data: Ground Truth from Computer Games

7 August 2016
Stephan R. Richter
Vibhav Vineet
Stefan Roth
V. Koltun
    VLM
ArXivPDFHTML

Papers citing "Playing for Data: Ground Truth from Computer Games"

37 / 437 papers shown
Title
DCAN: Dual Channel-wise Alignment Networks for Unsupervised Scene
  Adaptation
DCAN: Dual Channel-wise Alignment Networks for Unsupervised Scene Adaptation
Zuxuan Wu
Xintong Han
Yen-Liang Lin
M. Uzunbas
Tom Goldstein
Ser Nam Lim
L. Davis
24
263
0
16 Apr 2018
DeepMVS: Learning Multi-view Stereopsis
DeepMVS: Learning Multi-view Stereopsis
Po-Han Huang
Kevin Blackburn-Matzen
Johannes Kopf
Narendra Ahuja
Jia-Bin Huang
3DV
19
465
0
02 Apr 2018
Adaptive Affinity Fields for Semantic Segmentation
Adaptive Affinity Fields for Semantic Segmentation
Tsung-Wei Ke
Jyh-Jing Hwang
Ziwei Liu
Stella X. Yu
16
191
0
27 Mar 2018
Learning to Detect and Track Visible and Occluded Body Joints in a
  Virtual World
Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World
Matteo Fabbri
Fabio Lanzi
Simone Calderara
Andrea Palazzi
R. Vezzani
Rita Cucchiara
25
173
0
22 Mar 2018
AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation
AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation
Jogendra Nath Kundu
P. Uppala
Anuj Pahuja
R. Venkatesh Babu
MDE
26
185
0
05 Mar 2018
Learning to Adapt Structured Output Space for Semantic Segmentation
Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai
Wei-Chih Hung
S. Schulter
Kihyuk Sohn
Ming-Hsuan Yang
Manmohan Chandraker
OOD
SSeg
25
1,529
0
28 Feb 2018
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption
Peilun Li
Xiaodan Liang
Daoyuan Jia
Eric Xing
23
94
0
05 Jan 2018
Semantic Segmentation via Highly Fused Convolutional Network with
  Multiple Soft Cost Functions
Semantic Segmentation via Highly Fused Convolutional Network with Multiple Soft Cost Functions
Tao Yang
Yan Wu
Junqiao Zhao
Linting Guan
SSeg
62
37
0
04 Jan 2018
Unsupervised Histopathology Image Synthesis
Unsupervised Histopathology Image Synthesis
L. Hou
Ayush Agarwal
Dimitris Samaras
Tahsin M. Kurc
Rajarsi R. Gupta
Joel H. Saltz
MedIm
24
64
0
13 Dec 2017
CARLA: An Open Urban Driving Simulator
CARLA: An Open Urban Driving Simulator
Alexey Dosovitskiy
G. Ros
Felipe Codevilla
Antonio M. López
V. Koltun
VLM
104
5,079
0
10 Nov 2017
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
80
2,977
0
08 Nov 2017
Adversarial Dropout Regularization
Adversarial Dropout Regularization
Kuniaki Saito
Yoshitaka Ushiku
Tatsuya Harada
Kate Saenko
GAN
25
284
0
05 Nov 2017
Procedural Modeling and Physically Based Rendering for Synthetic Data
  Generation in Automotive Applications
Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications
Apostolia Tsirikoglou
J. Kronander
Magnus Wrenninge
Jonas Unger
3DV
38
78
0
17 Oct 2017
Learning Dilation Factors for Semantic Segmentation of Street Scenes
Learning Dilation Factors for Semantic Segmentation of Street Scenes
Yang He
Margret Keuper
Bernt Schiele
Mario Fritz
SSeg
19
8
0
06 Sep 2017
Semantic Foggy Scene Understanding with Synthetic Data
Semantic Foggy Scene Understanding with Synthetic Data
Daniel Gehrig
Dengxin Dai
Luc Van Gool
49
1,089
0
25 Aug 2017
Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection
Debidatta Dwibedi
Ishan Misra
M. Hebert
50
618
0
04 Aug 2017
LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD
  Data of Cluttered Scenes
LabelFusion: A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered Scenes
Pat Marion
Peter R. Florence
Lucas Manuelli
Russ Tedrake
3DV
36
109
0
15 Jul 2017
No More Discrimination: Cross City Adaptation of Road Scene Segmenters
No More Discrimination: Cross City Adaptation of Road Scene Segmenters
Yi-Hsin Chen
Wei-Yu Chen
Yu-Ting Chen
Bo-Cheng Tsai
Y. Wang
Min Sun
SSeg
28
341
0
27 Apr 2017
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
Siyuan Qiao
Wei Shen
Weichao Qiu
Chenxi Liu
Alan Yuille
24
36
0
22 Apr 2017
Computer Vision for Autonomous Vehicles: Problems, Datasets and State of
  the Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art
J. Janai
Fatma Guney
Aseem Behl
Andreas Geiger
10
787
0
18 Apr 2017
Surface Normals in the Wild
Surface Normals in the Wild
Weifeng Chen
Donglai Xiang
Jia Deng
3DH
13
36
0
10 Apr 2017
Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D
  Scenes
Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D Scenes
Kyle Genova
Manolis Savva
Angel X. Chang
Thomas Funkhouser
54
11
0
07 Apr 2017
Lucid Data Dreaming for Video Object Segmentation
Lucid Data Dreaming for Video Object Segmentation
Anna Khoreva
Rodrigo Benenson
Eddy Ilg
Thomas Brox
Bernt Schiele
VOS
34
38
0
28 Mar 2017
Domain Adaptation for Visual Applications: A Comprehensive Survey
Domain Adaptation for Visual Applications: A Comprehensive Survey
G. Csurka
OOD
30
505
0
17 Feb 2017
From Virtual to Real World Visual Perception using Domain Adaptation --
  The DPM as Example
From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example
Antonio M. López
Jiaolong Xu
J. L. Gómez
David Vazquez
G. Ros
22
11
0
29 Dec 2016
Physically-Based Rendering for Indoor Scene Understanding Using
  Convolutional Neural Networks
Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks
Yinda Zhang
Shuran Song
Ersin Yumer
Manolis Savva
Joon-Young Lee
Hailin Jin
Thomas Funkhouser
AI4CE
SSL
3DV
3DPC
19
260
0
22 Dec 2016
Video Propagation Networks
Video Propagation Networks
Varun Jampani
Raghudeep Gadde
Peter V. Gehler
DiffM
21
230
0
16 Dec 2016
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial
  Networks
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
Konstantinos Bousmalis
N. Silberman
David Dohan
D. Erhan
Dilip Krishnan
OOD
GAN
104
1,530
0
16 Dec 2016
SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor
  Trajectories with Ground Truth
SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor Trajectories with Ground Truth
J. McCormac
Ankur Handa
Stefan Leutenegger
Andrew J. Davison
3DV
3DPC
19
125
0
15 Dec 2016
DeepMind Lab
DeepMind Lab
Charlie Beattie
Joel Z. Leibo
Denis Teplyashin
Tom Ward
Marcus Wainwright
...
Stephen Gaffney
Helen King
Demis Hassabis
Shane Legg
Stig Petersen
22
240
0
12 Dec 2016
Automatic Model Based Dataset Generation for Fast and Accurate Crop and
  Weeds Detection
Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
M. D. Cicco
Ciro Potena
Giorgio Grisetti
Alberto Pretto
32
124
0
09 Dec 2016
FCNs in the Wild: Pixel-level Adversarial and Constraint-based
  Adaptation
FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation
Judy Hoffman
Dequan Wang
Feng Yu
Trevor Darrell
OOD
19
786
0
08 Dec 2016
TorontoCity: Seeing the World with a Million Eyes
TorontoCity: Seeing the World with a Million Eyes
Shenlong Wang
Min Bai
Gellért Máttyus
Hang Chu
Wenjie Luo
Binh Yang
Justin Liang
Joel Cheverie
Sanja Fidler
R. Urtasun
3DV
ViT
24
178
0
01 Dec 2016
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for
  Semantic Segmentation
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation
S. Jégou
M. Drozdzal
David Vazquez
Adriana Romero
Yoshua Bengio
SSeg
46
1,573
0
28 Nov 2016
Semantic Scene Completion from a Single Depth Image
Semantic Scene Completion from a Single Depth Image
Shuran Song
Feng Yu
Andy Zeng
Angel X. Chang
Manolis Savva
Thomas Funkhouser
3DV
36
1,228
0
28 Nov 2016
Driving in the Matrix: Can Virtual Worlds Replace Human-Generated
  Annotations for Real World Tasks?
Driving in the Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real World Tasks?
Matthew Johnson-Roberson
Charlie Barto
Rounak Mehta
S. N. Sridhar
Karl Rosaen
Ram Vasudevan
30
614
0
06 Oct 2016
Play and Learn: Using Video Games to Train Computer Vision Models
Play and Learn: Using Video Games to Train Computer Vision Models
Alireza Shafaei
James J. Little
Mark Schmidt
36
109
0
05 Aug 2016
Previous
123456789