Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.03339
Cited By
v1
v2 (latest)
Distributed learning with regularized least squares
11 August 2016
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed learning with regularized least squares"
50 / 81 papers shown
Title
Learning Theory of Decentralized Robust Kernel-Based Learning Algorithm
Zhan Yu
149
0
0
05 Jun 2025
Distributed Learning with Discretely Observed Functional Data
Jiading Liu
Lei Shi
50
0
0
03 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
148
1
0
24 Aug 2024
Multiparameter regularization and aggregation in the context of polynomial functional regression
E. R. Gizewski
Markus Holzleitner
Lukas Mayer-Suess
S. Pereverzyev
S. Pereverzyev
103
0
0
07 May 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
55
0
0
07 Mar 2024
Efficient Computing Algorithm for High Dimensional Sparse Support Vector Machine
Jiawei Wen
62
1
0
25 Dec 2023
Adaptive Parameter Selection for Kernel Ridge Regression
Shao-Bo Lin
26
3
0
10 Dec 2023
On regularized polynomial functional regression
Markus Holzleitner
S. Pereverzyev
215
6
0
06 Nov 2023
Distributed Uncertainty Quantification of Kernel Interpolation on Spheres
Shao-Bo Lin
Xingping Sun
Di Wang
23
3
0
25 Oct 2023
Stability and Generalization for Minibatch SGD and Local SGD
Yunwen Lei
Tao Sun
Mingrui Liu
91
4
0
02 Oct 2023
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos
Di Wang
Xiaotong Liu
Shao-Bo Lin
Ding-Xuan Zhou
75
0
0
08 Sep 2023
Distributed Semi-Supervised Sparse Statistical Inference
Jiyuan Tu
Weidong Liu
Xiaojun Mao
Mingyue Xu
43
1
0
17 Jun 2023
Lp- and Risk Consistency of Localized SVMs
Hannes Köhler
117
0
0
16 May 2023
Distributed Gradient Descent for Functional Learning
Zhan Yu
Jun Fan
Zhongjie Shi
Ding-Xuan Zhou
61
3
0
12 May 2023
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
68
6
0
05 May 2023
A review of distributed statistical inference
Yuan Gao
Weidong Liu
Hansheng Wang
Xiaozhou Wang
Yibo Yan
Riquan Zhang
74
43
0
13 Apr 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
79
18
0
27 Mar 2023
Error analysis of regularized trigonometric linear regression with unbounded sampling: a statistical learning viewpoint
Anna Scampicchio
Elena Arcari
Melanie Zeilinger
54
1
0
16 Mar 2023
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
57
2
0
08 Mar 2023
Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes
Di Wang
Yao Wang
Shaojie Tang
OffRL
143
1
0
21 Feb 2023
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
85
12
0
20 Nov 2022
Local SGD in Overparameterized Linear Regression
Mike Nguyen
Charly Kirst
Nicole Mücke
58
0
0
20 Oct 2022
Capacity dependent analysis for functional online learning algorithms
Xin Guo
Zheng-Chu Guo
Lei Shi
65
20
0
25 Sep 2022
Coefficient-based Regularized Distribution Regression
Yuan Mao
Lei Shi
Zheng-Chu Guo
105
4
0
26 Aug 2022
Distribution Regression with Sliced Wasserstein Kernels
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
72
17
0
08 Feb 2022
Radial Basis Function Approximation with Distributively Stored Data on Spheres
Han Feng
Shao-Bo Lin
Ding-Xuan Zhou
26
8
0
05 Dec 2021
Federated Gaussian Process: Convergence, Automatic Personalization and Multi-fidelity Modeling
Xubo Yue
Raed Al Kontar
FedML
130
9
0
28 Nov 2021
Nyström Regularization for Time Series Forecasting
Zirui Sun
Mingwei Dai
Yao Wang
Shao-Bo Lin
AI4TS
73
2
0
13 Nov 2021
Data splitting improves statistical performance in overparametrized regimes
Nicole Mücke
Enrico Reiss
Jonas Rungenhagen
Markus Klein
55
8
0
21 Oct 2021
Oversampling Divide-and-conquer for Response-skewed Kernel Ridge Regression
Jingyi Zhang
Xiaoxiao Sun
48
0
0
13 Jul 2021
ParK: Sound and Efficient Kernel Ridge Regression by Feature Space Partitions
Luigi Carratino
Stefano Vigogna
Daniele Calandriello
Lorenzo Rosasco
55
7
0
23 Jun 2021
Hyperdimensional Computing for Efficient Distributed Classification with Randomized Neural Networks
A. Rosato
Massimo Panella
Denis Kleyko
79
18
0
02 Jun 2021
Uncertainty quantification for distributed regression
V. Avanesov
UQCV
22
0
0
24 May 2021
Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
Wei Cao
Bing-Yi Jing
55
6
0
20 Apr 2021
Total Stability of SVMs and Localized SVMs
H. Köhler
A. Christmann
48
4
0
29 Jan 2021
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
A. Chakraborty
K. Rajawat
Alec Koppel
62
3
0
13 Nov 2020
Provable Fictitious Play for General Mean-Field Games
Qiaomin Xie
Zhuoran Yang
Zhaoran Wang
Andreea Minca
84
18
0
08 Oct 2020
Kernel regression in high dimensions: Refined analysis beyond double descent
Fanghui Liu
Zhenyu Liao
Johan A. K. Suykens
82
50
0
06 Oct 2020
Kernel-based L_2-Boosting with Structure Constraints
Yao Wang
Xin Guo
Shao-Bo Lin
13
0
0
16 Sep 2020
Kernel Interpolation of High Dimensional Scattered Data
Shao-Bo Lin
Xiangyu Chang
Xingping Sun
11
6
0
03 Sep 2020
Distributed Learning via Filtered Hyperinterpolation on Manifolds
Guido Montúfar
Yu Guang Wang
20
7
0
18 Jul 2020
Decentralised Learning with Random Features and Distributed Gradient Descent
Dominic Richards
Patrick Rebeschini
Lorenzo Rosasco
63
18
0
01 Jul 2020
Optimal Rates of Distributed Regression with Imperfect Kernels
Hongwei Sun
Qiang Wu
25
15
0
30 Jun 2020
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point Processes
J. Schreurs
Michaël Fanuel
Johan A. K. Suykens
62
2
0
24 Jun 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
72
27
0
21 Jun 2020
Estimates on Learning Rates for Multi-Penalty Distribution Regression
Zhan Yu
D. Ho
23
0
0
16 Jun 2020
Sample complexity and effective dimension for regression on manifolds
Andrew D. McRae
Justin Romberg
Mark A. Davenport
106
8
0
13 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
128
176
0
23 Apr 2020
Distributed Kernel Ridge Regression with Communications
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
49
34
0
27 Mar 2020
Theoretical Analysis of Divide-and-Conquer ERM: Beyond Square Loss and RKHS
Yong Liu
Lizhong Ding
Weiping Wang
27
0
0
09 Mar 2020
1
2
Next