ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04471
  4. Cited By
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
v1v2v3 (latest)

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

16 August 2016
Qiang Liu
Dilin Wang
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm"

50 / 638 papers shown
Title
Thermodynamic Performance Limits for Score-Based Diffusion Models
Thermodynamic Performance Limits for Score-Based Diffusion Models
Nathan X. Kodama
Michael Hinczewski
DiffM
0
0
0
07 Oct 2025
Adaptive Kernel Selection for Stein Variational Gradient Descent
Adaptive Kernel Selection for Stein Variational Gradient Descent
Moritz Melcher
Simon Weissmann
Ashia C. Wilson
Jakob Zech
8
0
0
02 Oct 2025
Hessian-guided Perturbed Wasserstein Gradient Flows for Escaping Saddle Points
Hessian-guided Perturbed Wasserstein Gradient Flows for Escaping Saddle Points
Naoya Yamamoto
Juno Kim
Taiji Suzuki
40
0
0
21 Sep 2025
Distribution Estimation for Global Data Association via Approximate Bayesian Inference
Distribution Estimation for Global Data Association via Approximate Bayesian Inference
Yixuan Jia
Mason B. Peterson
Qingyuan Li
Yulun Tian
Jonathan P. How
0
0
0
19 Sep 2025
Is the `Agent' Paradigm a Limiting Framework for Next-Generation Intelligent Systems?
Is the `Agent' Paradigm a Limiting Framework for Next-Generation Intelligent Systems?
Jesse Gardner
Vladimir A. Baulin
LM&Ro
12
0
0
13 Sep 2025
Flow Straight and Fast in Hilbert Space: Functional Rectified Flow
Flow Straight and Fast in Hilbert Space: Functional Rectified Flow
Jianxin Zhang
Clayton Scott
16
0
0
12 Sep 2025
SVN-ICP: Uncertainty Estimation of ICP-based LiDAR Odometry using Stein Variational Newton
SVN-ICP: Uncertainty Estimation of ICP-based LiDAR Odometry using Stein Variational Newton
Shiping Ma
Haoming Zhang
Marc Toussaint
28
0
0
09 Sep 2025
Simulation Priors for Data-Efficient Deep Learning
Simulation Priors for Data-Efficient Deep Learning
Lenart Treven
Bhavya Sukhija
Jonas Rothfuss
Stelian Coros
Florian Dorfler
Andreas Krause
16
0
0
06 Sep 2025
Towards understanding Accelerated Stein Variational Gradient Flow -- Analysis of Generalized Bilinear Kernels for Gaussian target distributions
Towards understanding Accelerated Stein Variational Gradient Flow -- Analysis of Generalized Bilinear Kernels for Gaussian target distributions
Viktor Stein
Wuchen Li
32
0
0
04 Sep 2025
Fail2Progress: Learning from Real-World Robot Failures with Stein Variational Inference
Fail2Progress: Learning from Real-World Robot Failures with Stein Variational Inference
Yixuan Huang
Novella Alvina
M. Shanthi
Tucker Hermans
40
0
0
01 Sep 2025
MARS: Modality-Aligned Retrieval for Sequence Augmented CTR Prediction
MARS: Modality-Aligned Retrieval for Sequence Augmented CTR Prediction
Yutian Xiao
Shukuan Wang
Binhao Wang
Zhao Zhang
Yanze Zhang
Shanqi Liu
Chao Feng
Xiang Li
Fuzhen Zhuang
20
0
0
01 Sep 2025
Are We Really Learning the Score Function? Reinterpreting Diffusion Models Through Wasserstein Gradient Flow Matching
Are We Really Learning the Score Function? Reinterpreting Diffusion Models Through Wasserstein Gradient Flow Matching
An B. Vuong
Michael T. McCann
Javier E. Santos
Yen Ting Lin
DiffM
20
1
0
30 Aug 2025
Training-Free Stein Diffusion Guidance: Posterior Correction for Sampling Beyond High-Density Regions
Training-Free Stein Diffusion Guidance: Posterior Correction for Sampling Beyond High-Density Regions
Van Khoa Nguyen
Lionel Blondé
Alexandros Kalousis
44
0
0
07 Jul 2025
FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation
FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation
Maolin Wang
Yutian Xiao
Binhao Wang
Sheng Zhang
Shanshan Ye
Wanyu Wang
Hongzhi Yin
Ruocheng Guo
Zenglin Xu
40
0
0
07 Jul 2025
Branching Stein Variational Gradient Descent for sampling multimodal distributions
Branching Stein Variational Gradient Descent for sampling multimodal distributions
Isaias Banales
Arturo Jaramillo
Heli Ricalde Guerrero
69
0
0
16 Jun 2025
Variational Inference Optimized Using the Curved Geometry of Coupled Free Energy
Variational Inference Optimized Using the Curved Geometry of Coupled Free Energy
Kenric Nelson
Igor Oliveira
Amenah Al-Najafi
Fode Zhang
Hon Keung Tony Ng
DRL
144
1
0
10 Jun 2025
Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models
Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models
Ngoc-Quan Pham
Tuan Truong
Quyen Tran
T. H. Nguyen
Dinh Q. Phung
T. Le
115
3
0
08 Jun 2025
A Framework for Controllable Multi-objective Learning with Annealed Stein Variational Hypernetworks
A Framework for Controllable Multi-objective Learning with Annealed Stein Variational Hypernetworks
Minh-Duc Nguyen
Dung D. Le
114
0
0
07 Jun 2025
Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
Francesca R. Crucinio
Sahani Pathiraja
133
1
0
06 Jun 2025
Semi-Implicit Variational Inference via Kernelized Path Gradient Descent
Tobias Pielok
Bernd Bischl
David Rügamer
216
0
0
05 Jun 2025
Constrained Stein Variational Gradient Descent for Robot Perception, Planning, and Identification
Constrained Stein Variational Gradient Descent for Robot Perception, Planning, and Identification
Griffin Tabor
Tucker Hermans
89
1
0
31 May 2025
STACI: Spatio-Temporal Aleatoric Conformal Inference
STACI: Spatio-Temporal Aleatoric Conformal Inference
Brandon Feng
David K. Park
Xihaier Luo
Arantxa Urdangarin
Shinjae Yoo
Brian J. Reich
92
0
0
27 May 2025
Stationary MMD Points for Cubature
Stationary MMD Points for Cubature
Zonghao Chen
Toni Karvonen
Heishiro Kanagawa
F. Briol
Chris J. Oates
180
0
0
27 May 2025
Multiple Wasserstein Gradient Descent Algorithm for Multi-Objective Distributional Optimization
Multiple Wasserstein Gradient Descent Algorithm for Multi-Objective Distributional Optimization
Dai Hai Nguyen
Hiroshi Mamitsuka
Atsuyoshi Nakamura
120
0
0
24 May 2025
Repulsive Ensembles for Bayesian Inference in Physics-informed Neural Networks
Repulsive Ensembles for Bayesian Inference in Physics-informed Neural Networks
Philipp Pilar
Markus Heinonen
Niklas Wahlström
PINN
125
0
0
22 May 2025
Nonparametric Teaching for Graph Property Learners
Nonparametric Teaching for Graph Property Learners
Chen Zhang
Weixin Bu
Zhaochun Ren
Ziyue Liu
Yik-Chung Wu
Ngai Wong
219
0
0
20 May 2025
Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation
Personalized Bayesian Federated Learning with Wasserstein Barycenter Aggregation
Ting Wei
Biao Mei
Junliang Lyu
Renquan Zhang
Feng Zhou
Yifan Sun
FedML
107
0
0
20 May 2025
Adaptive Diffusion Constrained Sampling for Bimanual Robot Manipulation
Adaptive Diffusion Constrained Sampling for Bimanual Robot Manipulation
Haolei Tong
Yuezhe Zhang
Sophie Lueth
Georgia Chalvatzaki
165
0
0
19 May 2025
Training Latent Diffusion Models with Interacting Particle Algorithms
Training Latent Diffusion Models with Interacting Particle Algorithms
Tim Y. J. Wang
Juan Kuntz
O. Deniz Akyildiz
237
1
0
18 May 2025
Missing Data Imputation by Reducing Mutual Information with Rectified Flows
Missing Data Imputation by Reducing Mutual Information with Rectified Flows
Jiahao Yu
Qizhen Ying
Leyang Wang
Z. L. Jiang
Song Liu
144
0
0
16 May 2025
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
124
0
0
08 May 2025
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay Atanasov
118
0
0
06 May 2025
Flow Matching Ergodic Coverage
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
129
0
0
24 Apr 2025
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Cosmin Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
234
2
0
21 Apr 2025
Visual Prompting for One-shot Controllable Video Editing without Inversion
Visual Prompting for One-shot Controllable Video Editing without Inversion
Zitao Gao
Yuxi Zhou
Duo Peng
Joo-Hwee Lim
Zhigang Tu
De Wen Soh
Lin Geng Foo
DiffM
153
2
0
19 Apr 2025
DiverseFlow: Sample-Efficient Diverse Mode Coverage in Flows
DiverseFlow: Sample-Efficient Diverse Mode Coverage in Flows
Mashrur M. Morshed
Vishnu Boddeti
169
0
0
10 Apr 2025
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Jiayun Li
Kay Pompetzki
An T. Le
Haolei Tong
Jan Peters
Georgia Chalvatzaki
134
0
0
07 Apr 2025
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Hugo Buurmeijer
Luis A. Pabon
J. I. Alora
Roshan S. Kaundinya
George Haller
Marco Pavone
161
0
0
04 Apr 2025
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
215
3
0
03 Apr 2025
Accelerated Stein Variational Gradient Flow
Accelerated Stein Variational Gradient Flow
Viktor Stein
Wuchen Li
161
1
0
30 Mar 2025
Low Stein Discrepancy via Message-Passing Monte Carlo
Low Stein Discrepancy via Message-Passing Monte Carlo
Nathan Kirk
T. Konstantin Rusch
Jakob Zech
Daniela Rus
97
3
0
27 Mar 2025
Offline Model-Based Optimization: Comprehensive Review
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Ziqiang Liu
Yoshua Bengio
Can Chen
OffRL
183
8
0
21 Mar 2025
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
Dheeraj M. Nagaraj
Anant Raj
95
1
0
17 Mar 2025
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Entropy-regularized Gradient Estimators for Approximate Bayesian Inference
Jasmeet Kaur
BDLUQCV
240
0
0
15 Mar 2025
RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
RayFlow: Instance-Aware Diffusion Acceleration via Adaptive Flow Trajectories
Huiyang Shao
Xin Xia
Yanting Yang
Yuxi Ren
Xing Wang
Xuefeng Xiao
149
7
0
10 Mar 2025
Efficient Gradient-Based Inference for Manipulation Planning in Contact Factor Graphs
Jeongmin Lee
Sunkyung Park
Minji Lee
Dongjun Lee
125
0
0
08 Mar 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDLUQCV
145
0
0
02 Mar 2025
Advancing calibration for stochastic agent-based models in epidemiology with Stein variational inference and Gaussian process surrogates
Advancing calibration for stochastic agent-based models in epidemiology with Stein variational inference and Gaussian process surrogates
Connor Robertson
Cosmin Safta
Nicholson T. Collier
J. Ozik
Jaideep Ray
129
0
0
26 Feb 2025
Stein Discrepancy for Unsupervised Domain Adaptation
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
254
0
0
24 Feb 2025
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Jiajun Luo
Trambak Banerjee
Gourab Mukherjee
Wenguang Sun
173
0
0
17 Feb 2025
1234...111213
Next