Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1608.08225
Cited By
v1
v2
v3
v4 (latest)
Why does deep and cheap learning work so well?
29 August 2016
Henry W. Lin
Max Tegmark
David Rolnick
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Why does deep and cheap learning work so well?"
50 / 236 papers shown
Deep Neural Networks as the Semi-classical Limit of Topological Quantum Neural Networks: The problem of generalisation
A. Marcianò
De-Wei Chen
Filippo Fabrocini
C. Fields
M. Lulli
Emanuele Zappala
GNN
114
6
0
25 Oct 2022
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
166
40
0
24 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Neural Information Processing Systems (NeurIPS), 2022
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Tian Ding
Jianfeng Yao
323
10
0
21 Oct 2022
Why neural networks find simple solutions: the many regularizers of geometric complexity
Neural Information Processing Systems (NeurIPS), 2022
Benoit Dherin
Michael Munn
M. Rosca
David Barrett
340
42
0
27 Sep 2022
Three Learning Stages and Accuracy-Efficiency Tradeoff of Restricted Boltzmann Machines
Nature Communications (Nat Commun), 2022
Lennart Dabelow
Masahito Ueda
222
11
0
02 Sep 2022
Gaussian Process Surrogate Models for Neural Networks
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
251
9
0
11 Aug 2022
Image sensing with multilayer, nonlinear optical neural networks
Nature Photonics (Nat. Photonics), 2022
Tianyu Wang
Mandar M. Sohoni
Logan G. Wright
Martin M. Stein
Shifan Ma
Tatsuhiro Onodera
Maxwell G. Anderson
Peter L. McMahon
159
224
0
27 Jul 2022
Wavelet Conditional Renormalization Group
Physical Review X (PRX), 2022
Tanguy Marchand
M. Ozawa
Giulio Biroli
S. Mallat
118
21
0
11 Jul 2022
Advanced Transient Diagnostic with Ensemble Digital Twin Modeling
Edward Chen
Linyu Lin
Truc-Nam Dinh
62
4
0
23 May 2022
Towards understanding deep learning with the natural clustering prior
Simon Carbonnelle
176
0
0
15 Mar 2022
Categorical Representation Learning and RG flow operators for algorithmic classifiers
A. Sheshmani
Yi-Zhuang You
Wenbo Fu
A. Azizi
AI4CE
66
4
0
15 Mar 2022
Identifying equivalent Calabi--Yau topologies: A discrete challenge from math and physics for machine learning
Vishnu Jejjala
W. Taylor
Andrew P. Turner
257
8
0
15 Feb 2022
Decomposing neural networks as mappings of correlation functions
Physical Review Research (Phys. Rev. Res.), 2022
Kirsten Fischer
Alexandre René
Christian Keup
Moritz Layer
David Dahmen
M. Helias
FAtt
229
19
0
10 Feb 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
226
1
0
03 Jan 2022
Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation
Jeffmin Lin
Gil Goldshlager
Lin Lin
197
29
0
07 Dec 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
202
2
0
25 Nov 2021
Feature extraction of machine learning and phase transition point of Ising model
S. Funai
130
3
0
22 Nov 2021
Universality of Winning Tickets: A Renormalization Group Perspective
William T. Redman
Tianlong Chen
Zinan Lin
Akshunna S. Dogra
UQCV
277
8
0
07 Oct 2021
Impossibility Results in AI: A Survey
ACM Computing Surveys (CSUR), 2021
Mario Brčič
Roman V. Yampolskiy
338
29
0
01 Sep 2021
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group
SciPost Physics (SciPost Phys.), 2021
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
164
23
0
14 Jul 2021
Entropy Regularized Reinforcement Learning Using Large Deviation Theory
Physical Review Research (Phys. Rev. Res.), 2021
A. Arriojas
Jacob Adamczyk
Stas Tiomkin
R. Kulkarni
AI4CE
79
6
0
07 Jun 2021
Reverse Engineering the Neural Tangent Kernel
International Conference on Machine Learning (ICML), 2021
James B. Simon
Sajant Anand
M. DeWeese
362
13
0
06 Jun 2021
Machine-Learning Non-Conservative Dynamics for New-Physics Detection
Physical Review E (PRE), 2021
Ziming Liu
Bohan Wang
Qi Meng
Wei Chen
M. Tegmark
Tie-Yan Liu
PINN
AI4CE
385
19
0
31 May 2021
MAGI-X: Manifold-Constrained Gaussian Process Inference for Unknown System Dynamics
Chaofan Huang
Simin Ma
Shihao Yang
165
0
0
27 May 2021
Apply Artificial Neural Network to Solving Manpower Scheduling Problem
Tianyu Liu
Lingyu Zhang
84
2
0
07 May 2021
Deep physical neural networks enabled by a backpropagation algorithm for arbitrary physical systems
Logan G. Wright
Tatsuhiro Onodera
Martin M. Stein
Tianyu Wang
Darren T. Schachter
Zoey Hu
Peter L. McMahon
PINN
AI4CE
249
625
0
27 Apr 2021
On the approximation of functions by tanh neural networks
Neural Networks (NN), 2021
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
264
172
0
18 Apr 2021
The Autodidactic Universe
S. Alexander
W. Cunningham
J. Lanier
L. Smolin
S. Stanojevic
M. Toomey
D. Wecker
AI4CE
232
21
0
29 Mar 2021
Tensor networks and efficient descriptions of classical data
Sirui Lu
Márton Kanász-Nagy
I. Kukuljan
J. I. Cirac
150
34
0
11 Mar 2021
Why flatness does and does not correlate with generalization for deep neural networks
Shuo Zhang
Isaac Reid
Guillermo Valle Pérez
A. Louis
285
10
0
10 Mar 2021
Deep ReLU Networks Preserve Expected Length
International Conference on Learning Representations (ICLR), 2021
Boris Hanin
Ryan Jeong
David Rolnick
147
15
0
21 Feb 2021
Information contraction in noisy binary neural networks and its implications
Chuteng Zhou
Quntao Zhuang
Matthew Mattina
P. Whatmough
138
3
0
28 Jan 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
661
3
0
04 Jan 2021
The Representation Power of Neural Networks: Breaking the Curse of Dimensionality
Moise Blanchard
M. A. Bennouna
157
7
0
10 Dec 2020
Why Unsupervised Deep Networks Generalize
Anita de Mello Koch
E. Koch
R. Koch
OOD
152
8
0
07 Dec 2020
MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing
IEEE International Conference on Computer Vision (ICCV), 2020
Yuhang Li
Feng Zhu
Yazhe Niu
Mingzhu Shen
Xin Dong
F. Yu
Shaoqing Lu
Shi Gu
MQ
210
51
0
19 Nov 2020
A Study of Policy Gradient on a Class of Exactly Solvable Models
Gavin McCracken
Colin Daniels
Rosie Zhao
Anna M. Brandenberger
Prakash Panangaden
Doina Precup
143
0
0
03 Nov 2020
Physics-Based Deep Learning for Fiber-Optic Communication Systems
IEEE Journal on Selected Areas in Communications (JSAC), 2020
Christian Hager
H. Pfister
186
79
0
27 Oct 2020
A Probabilistic Representation of Deep Learning for Improving The Information Theoretic Interpretability
Xinjie Lan
Kenneth Barner
FAtt
127
2
0
27 Oct 2020
Provable Memorization via Deep Neural Networks using Sub-linear Parameters
Annual Conference Computational Learning Theory (COLT), 2020
Sejun Park
Jaeho Lee
Chulhee Yun
Jinwoo Shin
FedML
MDE
165
43
0
26 Oct 2020
RG-Flow: A hierarchical and explainable flow model based on renormalization group and sparse prior
Hong-Ye Hu
Dian Wu
Yi-Zhuang You
Bruno A. Olshausen
Yubei Chen
BDL
DRL
418
18
0
30 Sep 2020
Implicit Gradient Regularization
International Conference on Learning Representations (ICLR), 2020
David Barrett
Benoit Dherin
364
170
0
23 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
912
90
0
17 Sep 2020
Supervised Learning with Projected Entangled Pair States
Physical review B (PRB), 2020
Song Cheng
Lei Wang
Pan Zhang
123
59
0
12 Sep 2020
On Representing (Anti)Symmetric Functions
Marcus Hutter
112
25
0
30 Jul 2020
Measurement error models: from nonparametric methods to deep neural networks
Statistical Science (Statist. Sci.), 2020
Zhirui Hu
Z. Ke
Jun S. Liu
93
4
0
15 Jul 2020
Human
≠
\neq
=
AGI
Roman V. Yampolskiy
AI4CE
171
1
0
11 Jul 2020
Modeling Generalization in Machine Learning: A Methodological and Computational Study
Pietro Barbiero
Giovanni Squillero
Alberto Tonda
63
47
0
28 Jun 2020
Thermodynamic Machine Learning through Maximum Work Production
A. B. Boyd
James P. Crutchfield
M. Gu
AI4CE
421
19
0
27 Jun 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
270
62
0
26 Jun 2020
Previous
1
2
3
4
5
Next