ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.00527
  4. Cited By
Video Pixel Networks

Video Pixel Networks

3 October 2016
Nal Kalchbrenner
Aaron van den Oord
Karen Simonyan
Ivo Danihelka
Oriol Vinyals
Alex Graves
Koray Kavukcuoglu
ArXivPDFHTML

Papers citing "Video Pixel Networks"

31 / 81 papers shown
Title
Generating High Fidelity Images with Subscale Pixel Networks and
  Multidimensional Upscaling
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
Jacob Menick
Nal Kalchbrenner
11
149
0
04 Dec 2018
Visual Foresight: Model-Based Deep Reinforcement Learning for
  Vision-Based Robotic Control
Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control
F. Ebert
Chelsea Finn
Sudeep Dasari
Annie Xie
Alex X. Lee
Sergey Levine
SSL
13
377
0
03 Dec 2018
Towards Accurate Generative Models of Video: A New Metric & Challenges
Towards Accurate Generative Models of Video: A New Metric & Challenges
Thomas Unterthiner
Sjoerd van Steenkiste
Karol Kurach
Raphaël Marinier
Marcin Michalski
Sylvain Gelly
EGVM
VGen
13
681
0
03 Dec 2018
Disentangling Propagation and Generation for Video Prediction
Disentangling Propagation and Generation for Video Prediction
Hang Gao
Huazhe Xu
Qi-Zhi Cai
Ruth Wang
F. I. F. Richard Yu
Trevor Darrell
20
84
0
02 Dec 2018
Future Segmentation Using 3D Structure
Future Segmentation Using 3D Structure
Suhani Vora
R. Mahjourian
S. Pirk
A. Angelova
3DPC
19
8
0
28 Nov 2018
Recurrent Flow-Guided Semantic Forecasting
Recurrent Flow-Guided Semantic Forecasting
Adam M. Terwilliger
Garrick Brazil
Xiaoming Liu
13
46
0
21 Sep 2018
Smoothed Dilated Convolutions for Improved Dense Prediction
Smoothed Dilated Convolutions for Improved Dense Prediction
Zhengyang Wang
Shuiwang Ji
17
160
0
27 Aug 2018
MT-VAE: Learning Motion Transformations to Generate Multimodal Human
  Dynamics
MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics
Xinchen Yan
Akash Rastogi
Ruben Villegas
Kalyan Sunkavalli
Eli Shechtman
Sunil Hadap
Ersin Yumer
Honglak Lee
19
149
0
14 Aug 2018
Unsupervised Learning of Object Landmarks through Conditional Image
  Generation
Unsupervised Learning of Object Landmarks through Conditional Image Generation
Tomas Jakab
Ankush Gupta
Hakan Bilen
Andrea Vedaldi
SSL
19
252
0
20 Jun 2018
Learning to Decompose and Disentangle Representations for Video
  Prediction
Learning to Decompose and Disentangle Representations for Video Prediction
Jun-Ting Hsieh
Bingbin Liu
De-An Huang
Li Fei-Fei
Juan Carlos Niebles
DRL
127
305
0
11 Jun 2018
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
11
126
0
08 Jun 2018
A neural network trained to predict future video frames mimics critical
  properties of biological neuronal responses and perception
A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception
William Lotter
Gabriel Kreiman
David D. Cox
19
31
0
28 May 2018
Stochastic Adversarial Video Prediction
Stochastic Adversarial Video Prediction
Alex X. Lee
Richard Y. Zhang
F. Ebert
Pieter Abbeel
Chelsea Finn
Sergey Levine
DRL
VGen
GAN
20
450
0
04 Apr 2018
DIY Human Action Data Set Generation
DIY Human Action Data Set Generation
Mehran Khodabandeh
Hamid Reza Vaezi Joze
Ilya Zharkov
V. Pradeep
19
11
0
29 Mar 2018
Probabilistic Video Generation using Holistic Attribute Control
Probabilistic Video Generation using Holistic Attribute Control
Jiawei He
Andreas M. Lehrmann
Joseph Marino
Greg Mori
Leonid Sigal
VGen
DiffM
DRL
17
77
0
21 Mar 2018
DYAN: A Dynamical Atoms-Based Network for Video Prediction
DYAN: A Dynamical Atoms-Based Network for Video Prediction
Wenqian Liu
Abhishek Sharma
Octavia Camps
M. Sznaier
9
36
0
20 Mar 2018
Efficient Neural Audio Synthesis
Efficient Neural Audio Synthesis
Nal Kalchbrenner
Erich Elsen
Karen Simonyan
Seb Noury
Norman Casagrande
Edward Lockhart
Florian Stimberg
Aaron van den Oord
Sander Dieleman
Koray Kavukcuoglu
19
863
0
23 Feb 2018
Stochastic Video Generation with a Learned Prior
Stochastic Video Generation with a Learned Prior
Emily L. Denton
Rob Fergus
VGen
34
525
0
21 Feb 2018
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
22
855
0
28 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
18
4,800
0
02 Nov 2017
Visual Forecasting by Imitating Dynamics in Natural Sequences
Visual Forecasting by Imitating Dynamics in Natural Sequences
Kuo-Hao Zeng
Bokui (William) Shen
De-An Huang
Min Sun
Juan Carlos Niebles
AI4TS
13
61
0
19 Aug 2017
MoCoGAN: Decomposing Motion and Content for Video Generation
MoCoGAN: Decomposing Motion and Content for Video Generation
Sergey Tulyakov
Ming-Yu Liu
Xiaodong Yang
Jan Kautz
GAN
34
1,131
0
17 Jul 2017
PixelGAN Autoencoders
PixelGAN Autoencoders
Alireza Makhzani
Brendan J. Frey
GAN
32
100
0
02 Jun 2017
The Pose Knows: Video Forecasting by Generating Pose Futures
The Pose Knows: Video Forecasting by Generating Pose Futures
Jacob Walker
Kenneth Marino
Abhinav Gupta
M. Hebert
22
348
0
28 Apr 2017
Predicting Deeper into the Future of Semantic Segmentation
Predicting Deeper into the Future of Semantic Segmentation
Pauline Luc
Natalia Neverova
Camille Couprie
Jakob Verbeek
Yann LeCun
21
241
0
22 Mar 2017
Improved Variational Autoencoders for Text Modeling using Dilated
  Convolutions
Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
Zichao Yang
Zhiting Hu
Ruslan Salakhutdinov
Taylor Berg-Kirkpatrick
13
383
0
27 Feb 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
13
930
0
19 Jan 2017
Learning to Act by Predicting the Future
Learning to Act by Predicting the Future
Alexey Dosovitskiy
V. Koltun
19
280
0
06 Nov 2016
Generating Videos with Scene Dynamics
Generating Videos with Scene Dynamics
Carl Vondrick
Hamed Pirsiavash
Antonio Torralba
GAN
VGen
66
1,460
0
08 Sep 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
203
7,902
0
13 Jun 2015
Previous
12