ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.03425
  4. Cited By
Statistics of Robust Optimization: A Generalized Empirical Likelihood
  Approach
v1v2v3 (latest)

Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach

11 October 2016
John C. Duchi
Peter Glynn
Hongseok Namkoong
ArXiv (abs)PDFHTML

Papers citing "Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach"

50 / 202 papers shown
Title
Efficient Data-Driven Optimization with Noisy Data
Efficient Data-Driven Optimization with Noisy Data
Bart P. G. Van Parys
55
3
0
08 Feb 2021
The Privacy-Utility Tradeoff of Robust Local Differential Privacy
The Privacy-Utility Tradeoff of Robust Local Differential Privacy
Milan Lopuhaä-Zwakenberg
J. Goseling
70
4
0
22 Jan 2021
Regularized Policies are Reward Robust
Regularized Policies are Reward Robust
Hisham Husain
K. Ciosek
Ryota Tomioka
47
25
0
18 Jan 2021
Residuals-based distributionally robust optimization with covariate
  information
Residuals-based distributionally robust optimization with covariate information
R. Kannan
G. Bayraksan
James R. Luedtke
71
43
0
02 Dec 2020
Improving Offline Contextual Bandits with Distributional Robustness
Improving Offline Contextual Bandits with Distributional Robustness
Otmane Sakhi
Louis Faury
Flavian Vasile
OffRL
41
7
0
13 Nov 2020
Linear Regression Games: Convergence Guarantees to Approximate
  Out-of-Distribution Solutions
Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
Kartik Ahuja
Karthikeyan Shanmugam
Amit Dhurandhar
59
9
0
28 Oct 2020
Evaluating Model Robustness and Stability to Dataset Shift
Evaluating Model Robustness and Stability to Dataset Shift
Adarsh Subbaswamy
R. Adams
Suchi Saria
OOD
69
9
0
28 Oct 2020
Are Adversarial Examples Created Equal? A Learnable Weighted Minimax
  Risk for Robustness under Non-uniform Attacks
Are Adversarial Examples Created Equal? A Learnable Weighted Minimax Risk for Robustness under Non-uniform Attacks
Huimin Zeng
Chen Zhu
Tom Goldstein
Furong Huang
AAML
61
18
0
24 Oct 2020
CoinDICE: Off-Policy Confidence Interval Estimation
CoinDICE: Off-Policy Confidence Interval Estimation
Bo Dai
Ofir Nachum
Yinlam Chow
Lihong Li
Csaba Szepesvári
Dale Schuurmans
OffRL
76
87
0
22 Oct 2020
Minimax Classification with 0-1 Loss and Performance Guarantees
Minimax Classification with 0-1 Loss and Performance Guarantees
Santiago Mazuelas
Andrea Zanoni
Aritz Pérez Martínez
64
13
0
15 Oct 2020
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
70
385
0
14 Oct 2020
Distributionally Robust Parametric Maximum Likelihood Estimation
Distributionally Robust Parametric Maximum Likelihood Estimation
Viet Anh Nguyen
Xuhui Zhang
Jose H. Blanchet
A. Georghiou
OOD
24
8
0
11 Oct 2020
Finite-Sample Guarantees for Wasserstein Distributionally Robust
  Optimization: Breaking the Curse of Dimensionality
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
Rui Gao
81
94
0
09 Sep 2020
BREEDS: Benchmarks for Subpopulation Shift
BREEDS: Benchmarks for Subpopulation Shift
Shibani Santurkar
Dimitris Tsipras
Aleksander Madry
OOD
68
175
0
11 Aug 2020
Distributionally Robust Losses for Latent Covariate Mixtures
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
77
81
0
28 Jul 2020
Accounting for Unobserved Confounding in Domain Generalization
Accounting for Unobserved Confounding in Domain Generalization
Alexis Bellot
M. Schaar
CMLOOD
97
23
0
21 Jul 2020
An Online Method for A Class of Distributionally Robust Optimization
  with Non-Convex Objectives
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
Rong Jin
Tianbao Yang
102
47
0
17 Jun 2020
Risk Variance Penalization
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
172
33
0
13 Jun 2020
Kernel Distributionally Robust Optimization
Kernel Distributionally Robust Optimization
Jia Jie Zhu
Wittawat Jitkrittum
Moritz Diehl
Bernhard Schölkopf
105
16
0
12 Jun 2020
Robustified Multivariate Regression and Classification Using
  Distributionally Robust Optimization under the Wasserstein Metric
Robustified Multivariate Regression and Classification Using Distributionally Robust Optimization under the Wasserstein Metric
Ruidi Chen
I. Paschalidis
OOD
44
4
0
10 Jun 2020
Distributionally Robust Batch Contextual Bandits
Distributionally Robust Batch Contextual Bandits
Nian Si
Fan Zhang
Zhengyuan Zhou
Jose H. Blanchet
OffRL
89
26
0
10 Jun 2020
Distributional Robustness with IPMs and links to Regularization and GANs
Distributional Robustness with IPMs and links to Regularization and GANs
Hisham Husain
70
22
0
08 Jun 2020
Task-Robust Model-Agnostic Meta-Learning
Task-Robust Model-Agnostic Meta-Learning
Liam Collins
Aryan Mokhtari
Sanjay Shakkottai
OOD
59
13
0
12 Feb 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
113
252
0
11 Feb 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Vercauteren
OOD
96
10
0
08 Jan 2020
Incorporating Unlabeled Data into Distributionally Robust Learning
Incorporating Unlabeled Data into Distributionally Robust Learning
Charlie Frogner
Sebastian Claici
Edward Chien
Justin Solomon
OOD
78
26
0
16 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
112
1,250
0
20 Nov 2019
Corruption-robust exploration in episodic reinforcement learning
Corruption-robust exploration in episodic reinforcement learning
Thodoris Lykouris
Max Simchowitz
Aleksandrs Slivkins
Wen Sun
105
105
0
20 Nov 2019
Model Specification Test with Unlabeled Data: Approach from Covariate Shift
Masahiro Kato
H. Kawarazaki
OOD
443
0
0
02 Nov 2019
Adaptive Sampling for Stochastic Risk-Averse Learning
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
146
54
0
28 Oct 2019
Diametrical Risk Minimization: Theory and Computations
Diametrical Risk Minimization: Theory and Computations
Matthew Norton
J. Royset
59
19
0
24 Oct 2019
Distributionally Robust Language Modeling
Distributionally Robust Language Modeling
Yonatan Oren
Shiori Sagawa
Tatsunori B. Hashimoto
Percy Liang
OOD
93
176
0
04 Sep 2019
Distributionally Robust Optimization: A Review
Distributionally Robust Optimization: A Review
Hamed Rahimian
Sanjay Mehrotra
74
134
0
13 Aug 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
260
2,249
0
05 Jul 2019
Training individually fair ML models with Sensitive Subspace Robustness
Training individually fair ML models with Sensitive Subspace Robustness
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaMLOOD
88
120
0
28 Jun 2019
Distributionally Robust Counterfactual Risk Minimization
Distributionally Robust Counterfactual Risk Minimization
Louis Faury
Ugo Tanielian
Flavian Vasile
E. Smirnova
Elvis Dohmatob
78
45
0
14 Jun 2019
Improving Neural Language Modeling via Adversarial Training
Improving Neural Language Modeling via Adversarial Training
Dilin Wang
Chengyue Gong
Qiang Liu
AAML
115
119
0
10 Jun 2019
Maximum Weighted Loss Discrepancy
Maximum Weighted Loss Discrepancy
Fereshte Khani
Aditi Raghunathan
Percy Liang
61
16
0
08 Jun 2019
Empirical Likelihood for Contextual Bandits
Empirical Likelihood for Contextual Bandits
Nikos Karampatziakis
John Langford
Paul Mineiro
OffRL
134
9
0
07 Jun 2019
Distributionally Robust Optimization and Generalization in Kernel
  Methods
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
88
134
0
27 May 2019
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
92
131
0
24 May 2019
A Distributionally Robust Boosting Algorithm
A Distributionally Robust Boosting Algorithm
Jose H. Blanchet
Yang Kang
Fan Zhang
Zhangyi Hu
39
7
0
20 May 2019
General risk measures for robust machine learning
General risk measures for robust machine learning
Émilie Chouzenoux
Henri Gérard
J. Pesquet
OOD
50
7
0
26 Apr 2019
Parametric Scenario Optimization under Limited Data: A Distributionally
  Robust Optimization View
Parametric Scenario Optimization under Limited Data: A Distributionally Robust Optimization View
Henry Lam
Fengpei Li
20
0
0
25 Apr 2019
Distributionally Robust Reinforcement Learning
Distributionally Robust Reinforcement Learning
E. Smirnova
Elvis Dohmatob
Jérémie Mary
OffRL
68
60
0
23 Feb 2019
Supervised classification via minimax probabilistic transformations
Supervised classification via minimax probabilistic transformations
Santiago Mazuelas
Andrea Zanoni
Aritz Pérez Martínez
31
2
0
02 Feb 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
163
142
0
24 Jan 2019
Robust Optimization over Multiple Domains
Robust Optimization over Multiple Domains
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
OOD
97
71
0
19 May 2018
Distributionally Robust Submodular Maximization
Distributionally Robust Submodular Maximization
Matthew Staib
Bryan Wilder
Stefanie Jegelka
100
36
0
14 Feb 2018
Calibration of Distributionally Robust Empirical Optimization Models
Calibration of Distributionally Robust Empirical Optimization Models
Jun-ya Gotoh
M. J. Kim
Andrew E. B. Lim
89
44
0
17 Nov 2017
Previous
12345
Next