ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09900
  4. Cited By
Inference Compilation and Universal Probabilistic Programming

Inference Compilation and Universal Probabilistic Programming

31 October 2016
T. Le
A. G. Baydin
Frank D. Wood
    UQCV
ArXivPDFHTML

Papers citing "Inference Compilation and Universal Probabilistic Programming"

50 / 79 papers shown
Title
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
45
1
0
05 Nov 2024
Combining Induction and Transduction for Abstract Reasoning
Combining Induction and Transduction for Abstract Reasoning
Wen-Ding Li
Keya Hu
Carter Larsen
Yuqing Wu
Simon Alford
...
Dat Nguyen
Wei-Long Zheng
Zenna Tavares
Yewen Pu
Kevin Ellis
AI4CE
35
7
0
04 Nov 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
67
3
0
23 Aug 2024
All-in-one simulation-based inference
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian Weilbach
Frank D. Wood
Jakob H. Macke
34
26
0
15 Apr 2024
Efficient Incremental Belief Updates Using Weighted Virtual Observations
Efficient Incremental Belief Updates Using Weighted Virtual Observations
David Tolpin
14
0
0
10 Feb 2024
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
22
2
0
01 Nov 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
30
0
0
23 Oct 2023
Neural Amortized Inference for Nested Multi-agent Reasoning
Neural Amortized Inference for Nested Multi-agent Reasoning
Kunal Jha
T. Le
Chuanyang Jin
Yen-Ling Kuo
J. Tenenbaum
Tianmin Shu
LLMAG
AI4CE
15
5
0
21 Aug 2023
Bayesian Program Learning by Decompiling Amortized Knowledge
Bayesian Program Learning by Decompiling Amortized Knowledge
Alessandro B. Palmarini
Chris Lucas
N. Siddharth
CML
6
0
0
13 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
35
0
0
10 Jun 2023
Human-like Few-Shot Learning via Bayesian Reasoning over Natural
  Language
Human-like Few-Shot Learning via Bayesian Reasoning over Natural Language
Kevin Ellis
BDL
LRM
21
16
0
05 Jun 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
Comparative Study of Coupling and Autoregressive Flows through Robust
  Statistical Tests
Comparative Study of Coupling and Autoregressive Flows through Robust Statistical Tests
A. Coccaro
Marco Letizia
H. Reyes-González
Riccardo Torre
OOD
30
5
0
23 Feb 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
29
12
0
27 Oct 2022
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
Andreas Munk
A. Mead
Frank D. Wood
17
2
0
21 Oct 2022
Graphically Structured Diffusion Models
Graphically Structured Diffusion Models
Christian Weilbach
William Harvey
Frank D. Wood
DiffM
35
7
0
20 Oct 2022
Fast Estimation of Bayesian State Space Models Using Amortized
  Simulation-Based Inference
Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference
R. Khabibullin
S. Seleznev
28
1
0
13 Oct 2022
Foundation Posteriors for Approximate Probabilistic Inference
Foundation Posteriors for Approximate Probabilistic Inference
Mike Wu
Noah D. Goodman
UQCV
23
6
0
19 May 2022
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Alexander K. Lew
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
16
10
0
05 Mar 2022
Estimators of Entropy and Information via Inference in Probabilistic
  Models
Estimators of Entropy and Information via Inference in Probabilistic Models
Feras A. Saad
Marco F. Cusumano-Towner
Vikash K. Mansinghka
9
4
0
24 Feb 2022
Unifying AI Algorithms with Probabilistic Programming using Implicitly
  Defined Representations
Unifying AI Algorithms with Probabilistic Programming using Implicitly Defined Representations
Avi Pfeffer
M. Harradon
Joseph Campolongo
S. Cvijic
19
2
0
05 Oct 2021
How To Train Your Program: a Probabilistic Programming Pattern for
  Bayesian Learning From Data
How To Train Your Program: a Probabilistic Programming Pattern for Bayesian Learning From Data
David Tolpin
17
0
0
08 May 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
13
1
0
01 Mar 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Control-Data Separation and Logical Condition Propagation for Efficient
  Inference on Probabilistic Programs
Control-Data Separation and Logical Condition Propagation for Efficient Inference on Probabilistic Programs
I. Hasuo
Yuichiro Oyabu
Clovis Eberhart
Kohei Suenaga
Kenta Cho
Shin-ya Katsumata
TPM
22
3
0
05 Jan 2021
Universal Policies for Software-Defined MDPs
Universal Policies for Software-Defined MDPs
Daniel Selsam
Jesse Michael Han
L. D. Moura
Patrice Godefroid
17
2
0
21 Dec 2020
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Feynman T. Liang
Nimar S. Arora
N. Tehrani
Y. Li
Michael Tingley
E. Meijer
12
0
0
23 Oct 2020
Amortized Bayesian Inference for Models of Cognition
Amortized Bayesian Inference for Models of Cognition
Stefan T. Radev
A. Voss
Eva Marie Wieschen
Paul-Christian Burkner
6
5
0
08 May 2020
Denise: Deep Robust Principal Component Analysis for Positive
  Semidefinite Matrices
Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices
Calypso Herrera
Florian Krach
Anastasis Kratsios
P. Ruyssen
Josef Teichmann
28
2
0
28 Apr 2020
Amortized Bayesian model comparison with evidential deep learning
Amortized Bayesian model comparison with evidential deep learning
Stefan T. Radev
Marco D’Alessandro
U. Mertens
A. Voss
Ullrich Kothe
Paul-Christian Burkner
BDL
20
33
0
22 Apr 2020
Planning as Inference in Epidemiological Models
Planning as Inference in Epidemiological Models
Frank D. Wood
Andrew Warrington
Saeid Naderiparizi
Christian Weilbach
Vaden Masrani
...
Adam Scibior
Boyan Beronov
John Grefenstette
Duncan Campbell
Alireza Nasseri
17
6
0
30 Mar 2020
Coping With Simulators That Don't Always Return
Coping With Simulators That Don't Always Return
Andrew Warrington
Saeid Naderiparizi
Frank D. Wood
13
4
0
28 Mar 2020
Learning Compositional Rules via Neural Program Synthesis
Learning Compositional Rules via Neural Program Synthesis
Maxwell Nye
Armando Solar-Lezama
J. Tenenbaum
Brenden Lake
NAI
LRM
12
117
0
12 Mar 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
24
825
0
04 Nov 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
16
44
0
29 Oct 2019
Attention for Inference Compilation
Attention for Inference Compilation
William Harvey
Andreas Munk
A. G. Baydin
Alexander Bergholm
Frank D. Wood
17
9
0
25 Oct 2019
Probabilistic Surrogate Networks for Simulators with Unbounded
  Randomness
Probabilistic Surrogate Networks for Simulators with Unbounded Randomness
Andreas Munk
Berend Zwartsenberg
Adam Scibior
A. G. Baydin
Andrew Stewart
G. Fernlund
A. Poursartip
Frank D. Wood
TPM
14
4
0
25 Oct 2019
Amortized Rejection Sampling in Universal Probabilistic Programming
Amortized Rejection Sampling in Universal Probabilistic Programming
Saeid Naderiparizi
Adam Scibior
Andreas Munk
Mehrdad Ghadiri
A. G. Baydin
...
R. Zinkov
Philip H. S. Torr
Tom Rainforth
Yee Whye Teh
Frank D. Wood
16
7
0
20 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic
  Programming
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
12
17
0
17 Oct 2019
Universal Marginaliser for Deep Amortised Inference for Probabilistic
  Programs
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
R. Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
A. Buchard
Maria Lomeli
Yura N. Perov
Saurabh Johri
UQCV
16
0
0
16 Oct 2019
Distilling Importance Sampling for Likelihood Free Inference
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
11
3
0
08 Oct 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
16
23
0
20 Jul 2019
Amortized Monte Carlo Integration
Amortized Monte Carlo Integration
Adam Goliñski
Frank D. Wood
Tom Rainforth
23
4
0
18 Jul 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip H. S. Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank D. Wood
25
55
0
08 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank D. Wood
14
48
0
28 Jun 2019
Hijacking Malaria Simulators with Probabilistic Programming
Hijacking Malaria Simulators with Probabilistic Programming
Bradley Gram-Hansen
Christian Schroeder de Witt
Tom Rainforth
Philip H. S. Torr
Yee Whye Teh
A. G. Baydin
23
8
0
29 May 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
19
8
0
27 May 2019
Generative Grading: Near Human-level Accuracy for Automated Feedback on
  Richly Structured Problems
Generative Grading: Near Human-level Accuracy for Automated Feedback on Richly Structured Problems
Ali Malik
Mike Wu
Vrinda Vasavada
Jinpeng Song
Madison Coots
John C. Mitchell
Noah D. Goodman
Chris Piech
AI4Ed
22
9
0
23 May 2019
12
Next