Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01491
Cited By
Understanding Deep Neural Networks with Rectified Linear Units
4 November 2016
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Deep Neural Networks with Rectified Linear Units"
50 / 100 papers shown
Title
ReLU Deep Neural Networks from the Hierarchical Basis Perspective
Juncai He
Lin Li
Jinchao Xu
AI4CE
28
30
0
10 May 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi
Robert D. Nowak
MLT
38
70
0
07 May 2021
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
Guido Montúfar
Yue Ren
Leon Zhang
20
39
0
16 Apr 2021
Fast Jacobian-Vector Product for Deep Networks
Randall Balestriero
Richard Baraniuk
31
4
0
01 Apr 2021
Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions
Todd P. Huster
Jérémy E. Cohen
Zinan Lin
Kevin S. Chan
Charles A. Kamhoua
Nandi O. Leslie
C. Chiang
Vyas Sekar
GAN
46
26
0
22 Jan 2021
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
35
31
0
09 Dec 2020
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
Deep neural network for solving differential equations motivated by Legendre-Galerkin approximation
Bryce Chudomelka
Youngjoon Hong
Hyunwoo J. Kim
Jinyoung Park
27
7
0
24 Oct 2020
On the Number of Linear Functions Composing Deep Neural Network: Towards a Refined Definition of Neural Networks Complexity
Yuuki Takai
Akiyoshi Sannai
Matthieu Cordonnier
77
4
0
23 Oct 2020
Neural Star Domain as Primitive Representation
Yuki Kawana
Yusuke Mukuta
Tatsuya Harada
3DV
11
25
0
21 Oct 2020
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
50
68
0
21 Oct 2020
Effects of the Nonlinearity in Activation Functions on the Performance of Deep Learning Models
N. Kulathunga
N. R. Ranasinghe
D. Vrinceanu
Zackary Kinsman
Lei Huang
Yunjiao Wang
6
4
0
14 Oct 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
ConFoc: Content-Focus Protection Against Trojan Attacks on Neural Networks
Miguel Villarreal-Vasquez
B. Bhargava
AAML
17
38
0
01 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
19
18
0
29 Jun 2020
Universal Function Approximation on Graphs
Rickard Brüel-Gabrielsson
32
6
0
14 Mar 2020
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
Mert Pilanci
Tolga Ergen
26
116
0
24 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
On the Decision Boundaries of Neural Networks: A Tropical Geometry Perspective
Motasem Alfarra
Adel Bibi
Hasan Hammoud
M. Gaafar
Guohao Li
16
26
0
20 Feb 2020
A closer look at the approximation capabilities of neural networks
Kai Fong Ernest Chong
18
16
0
16 Feb 2020
On Approximation Capabilities of ReLU Activation and Softmax Output Layer in Neural Networks
Behnam Asadi
Hui Jiang
10
20
0
10 Feb 2020
Empirical Studies on the Properties of Linear Regions in Deep Neural Networks
Xiao Zhang
Dongrui Wu
21
38
0
04 Jan 2020
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
24
56
0
01 Jan 2020
Almost Uniform Sampling From Neural Networks
Changlong Wu
N. Santhanam
20
0
0
10 Dec 2019
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
24
236
0
27 Nov 2019
Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs
Z. Cai
Jingshuang Chen
Min Liu
Xinyu Liu
10
88
0
05 Nov 2019
Large Scale Model Predictive Control with Neural Networks and Primal Active Sets
Steven W. Chen
Tianyu Wang
Nikolay Atanasov
Vijay Kumar
M. Morari
17
86
0
23 Oct 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
23
77
0
15 Jul 2019
Controlling Neural Level Sets
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
22
118
0
28 May 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
40
327
0
21 May 2019
DSTP-RNN: a dual-stage two-phase attention-based recurrent neural networks for long-term and multivariate time series prediction
Yeqi Liu
Chuanyang Gong
Ling Yang
Yingyi Chen
AI4TS
19
305
0
16 Apr 2019
Deep Representation with ReLU Neural Networks
Andreas Heinecke
W. Hwang
39
0
0
29 Mar 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
A lattice-based approach to the expressivity of deep ReLU neural networks
V. Corlay
J. Boutros
P. Ciblat
L. Brunel
11
4
0
28 Feb 2019
Error bounds for approximations with deep ReLU neural networks in
W
s
,
p
W^{s,p}
W
s
,
p
norms
Ingo Gühring
Gitta Kutyniok
P. Petersen
20
199
0
21 Feb 2019
A Constructive Approach for One-Shot Training of Neural Networks Using Hypercube-Based Topological Coverings
W. B. Daniel
Enoch Yeung
23
2
0
09 Jan 2019
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
46
552
0
13 Dec 2018
A randomized gradient-free attack on ReLU networks
Francesco Croce
Matthias Hein
AAML
37
21
0
28 Nov 2018
Empirical Bounds on Linear Regions of Deep Rectifier Networks
Thiago Serra
Srikumar Ramalingam
8
42
0
08 Oct 2018
Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units
Yixi Xu
Tianlin Li
MQ
31
12
0
03 Oct 2018
On the Implicit Bias of Dropout
Poorya Mianjy
R. Arora
René Vidal
27
66
0
26 Jun 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min-Bin Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
57
1,394
0
22 Jun 2018
Tropical Geometry of Deep Neural Networks
Liwen Zhang
Gregory Naitzat
Lek-Heng Lim
32
137
0
18 May 2018
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
31
78
0
17 May 2018
A representer theorem for deep neural networks
M. Unser
35
98
0
26 Feb 2018
Limits on representing Boolean functions by linear combinations of simple functions: thresholds, ReLUs, and low-degree polynomials
Richard Ryan Williams
30
27
0
26 Feb 2018
Script Identification in Natural Scene Image and Video Frame using Attention based Convolutional-LSTM Network
A. Bhunia
Aishik Konwer
A. Bhunia
A. Bhowmick
P. Roy
Umapada Pal
19
124
0
01 Jan 2018
Reliably Learning the ReLU in Polynomial Time
Surbhi Goel
Varun Kanade
Adam R. Klivans
J. Thaler
19
124
0
30 Nov 2016
Benefits of depth in neural networks
Matus Telgarsky
151
602
0
14 Feb 2016
Previous
1
2