ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06321
  4. Cited By
Learning the Number of Neurons in Deep Networks

Learning the Number of Neurons in Deep Networks

19 November 2016
J. Álvarez
Mathieu Salzmann
ArXivPDFHTML

Papers citing "Learning the Number of Neurons in Deep Networks"

50 / 204 papers shown
Title
PydMobileNet: Improved Version of MobileNets with Pyramid Depthwise
  Separable Convolution
PydMobileNet: Improved Version of MobileNets with Pyramid Depthwise Separable Convolution
Van-Thanh Hoang
K. Jo
19
3
0
17 Nov 2018
Discrimination-aware Channel Pruning for Deep Neural Networks
Discrimination-aware Channel Pruning for Deep Neural Networks
Zhuangwei Zhuang
Mingkui Tan
Bohan Zhuang
Jing Liu
Yong Guo
Qingyao Wu
Junzhou Huang
Jin-Hui Zhu
25
594
0
28 Oct 2018
Dynamic Channel Pruning: Feature Boosting and Suppression
Dynamic Channel Pruning: Feature Boosting and Suppression
Xitong Gao
Yiren Zhao
L. Dudziak
Robert D. Mullins
Chengzhong Xu
42
311
0
12 Oct 2018
Rethinking the Value of Network Pruning
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
10
1,449
0
11 Oct 2018
Target Aware Network Adaptation for Efficient Representation Learning
Target Aware Network Adaptation for Efficient Representation Learning
Yang Zhong
Vladimir Li
R. Okada
A. Maki
21
6
0
02 Oct 2018
Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder
  for Evolving Data Streams
Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams
Mahardhika Pratama
Andri Ashfahani
Yew-Soon Ong
Savitha Ramasamy
E. Lughofer
6
15
0
24 Sep 2018
Deep Learning for Generic Object Detection: A Survey
Deep Learning for Generic Object Detection: A Survey
Li Liu
Wanli Ouyang
Xiaogang Wang
Paul Fieguth
Jie Chen
Xinwang Liu
M. Pietikäinen
ObjD
VLM
OOD
74
2,422
0
06 Sep 2018
Metabolize Neural Network
Metabolize Neural Network
Dan Dai
Zhiwen Yu
Yang Hu
Wenming Cao
Mingnan Luo
11
0
0
04 Sep 2018
An Incremental Construction of Deep Neuro Fuzzy System for Continual
  Learning of Non-stationary Data Streams
An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams
Mahardhika Pratama
Witold Pedrycz
Geoffrey I. Webb
11
48
0
26 Aug 2018
Deep Stacked Stochastic Configuration Networks for Lifelong Learning of
  Non-Stationary Data Streams
Deep Stacked Stochastic Configuration Networks for Lifelong Learning of Non-Stationary Data Streams
Mahardhika Pratama
Dianhui Wang
BDL
11
53
0
07 Aug 2018
A Unified Approximation Framework for Compressing and Accelerating Deep
  Neural Networks
A Unified Approximation Framework for Compressing and Accelerating Deep Neural Networks
Yuzhe Ma
Ran Chen
Wei Li
Fanhua Shang
Wenjian Yu
Minsik Cho
Bei Yu
20
3
0
26 Jul 2018
Make $\ell_1$ Regularization Effective in Training Sparse CNN
Make ℓ1\ell_1ℓ1​ Regularization Effective in Training Sparse CNN
Juncai He
Xiaodong Jia
Jinchao Xu
Lian Zhang
Liang Zhao
19
5
0
11 Jul 2018
Fuzzy Logic Interpretation of Quadratic Networks
Fuzzy Logic Interpretation of Quadratic Networks
Fenglei Fan
Ge Wang
32
7
0
04 Jul 2018
Doubly Nested Network for Resource-Efficient Inference
Doubly Nested Network for Resource-Efficient Inference
Jaehong Kim
Sungeun Hong
Yongseok Choi
Jiwon Kim
21
5
0
20 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
15
77
0
13 Jun 2018
Smallify: Learning Network Size while Training
Smallify: Learning Network Size while Training
Guillaume Leclerc
Manasi Vartak
Raul Castro Fernandez
Tim Kraska
Samuel Madden
4
13
0
10 Jun 2018
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural
  Networks
IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
Ke Sun
Mingjie Li
Dong Liu
Jingdong Wang
45
126
0
01 Jun 2018
Quantization Mimic: Towards Very Tiny CNN for Object Detection
Quantization Mimic: Towards Very Tiny CNN for Object Detection
Yi Wei
Xinyu Pan
Hongwei Qin
Wanli Ouyang
Junjie Yan
ObjD
22
88
0
06 May 2018
Learning Sparse Latent Representations with the Deep Copula Information
  Bottleneck
Learning Sparse Latent Representations with the Deep Copula Information Bottleneck
Aleksander Wieczorek
Mario Wieser
Damian Murezzan
Volker Roth
SSL
15
28
0
17 Apr 2018
Select, Attend, and Transfer: Light, Learnable Skip Connections
Select, Attend, and Transfer: Light, Learnable Skip Connections
Saeid Asgari Taghanaki
A. Bentaieb
Anmol Sharma
S. Kevin Zhou
Yefeng Zheng
...
Puneet Sharma
Sasa Grbic
Zhoubing Xu
Dorin Comaniciu
Ghassan Hamarneh
38
20
0
14 Apr 2018
Learning Strict Identity Mappings in Deep Residual Networks
Learning Strict Identity Mappings in Deep Residual Networks
Xin Yu
Zhiding Yu
Srikumar Ramalingam
14
17
0
05 Apr 2018
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Yichi Zhang
Zhijian Ou
22
0
0
01 Mar 2018
Neural Granger Causality
Neural Granger Causality
Alex Tank
Ian Covert
N. Foti
Ali Shojaie
E. Fox
CML
23
100
0
16 Feb 2018
Exploring Hidden Dimensions in Parallelizing Convolutional Neural
  Networks
Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks
Zhihao Jia
Sina Lin
C. Qi
A. Aiken
37
117
0
14 Feb 2018
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel
  Pruning of Convolution Layers
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers
Jianbo Ye
Xin Lu
Zhe-nan Lin
Jianmin Wang
27
406
0
01 Feb 2018
Learning to Prune Filters in Convolutional Neural Networks
Learning to Prune Filters in Convolutional Neural Networks
Qiangui Huang
S. Kevin Zhou
Suya You
Ulrich Neumann
VLM
28
177
0
23 Jan 2018
Nonparametric Neural Networks
Nonparametric Neural Networks
George Philipp
J. Carbonell
19
21
0
14 Dec 2017
NestedNet: Learning Nested Sparse Structures in Deep Neural Networks
NestedNet: Learning Nested Sparse Structures in Deep Neural Networks
Eunwoo Kim
Chanho Ahn
Songhwai Oh
18
2
0
11 Dec 2017
Recurrent Neural Networks for Semantic Instance Segmentation
Recurrent Neural Networks for Semantic Instance Segmentation
Amaia Salvador
Míriam Bellver
Victor Campos
Manel Baradad
F. Marqués
Jordi Torres
Xavier Giró-i-Nieto
SSeg
24
62
0
02 Dec 2017
CondenseNet: An Efficient DenseNet using Learned Group Convolutions
CondenseNet: An Efficient DenseNet using Learned Group Convolutions
Gao Huang
Shichen Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
39
796
0
25 Nov 2017
An Interpretable and Sparse Neural Network Model for Nonlinear Granger
  Causality Discovery
An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery
Alex Tank
Ian Cover
N. Foti
Ali Shojaie
E. Fox
CML
20
24
0
22 Nov 2017
Residual Parameter Transfer for Deep Domain Adaptation
Residual Parameter Transfer for Deep Domain Adaptation
Artem Rozantsev
Mathieu Salzmann
Pascal Fua
OOD
19
56
0
21 Nov 2017
Sparse-Input Neural Networks for High-dimensional Nonparametric
  Regression and Classification
Sparse-Input Neural Networks for High-dimensional Nonparametric Regression and Classification
Jean Feng
N. Simon
16
99
0
21 Nov 2017
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep
  Networks
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks
A. Gordon
Elad Eban
Ofir Nachum
Bo Chen
Hao Wu
Tien-Ju Yang
Edward Choi
27
337
0
18 Nov 2017
Online Deep Learning: Learning Deep Neural Networks on the Fly
Online Deep Learning: Learning Deep Neural Networks on the Fly
Doyen Sahoo
Quang Pham
Jing Lu
Guosheng Lin
OnRL
AI4CE
27
316
0
10 Nov 2017
Compression-aware Training of Deep Networks
Compression-aware Training of Deep Networks
J. Álvarez
Mathieu Salzmann
21
172
0
07 Nov 2017
A Survey of Model Compression and Acceleration for Deep Neural Networks
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
40
1,087
0
23 Oct 2017
To prune, or not to prune: exploring the efficacy of pruning for model
  compression
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
37
1,248
0
05 Oct 2017
Learning Intrinsic Sparse Structures within Long Short-Term Memory
Learning Intrinsic Sparse Structures within Long Short-Term Memory
W. Wen
Yuxiong He
Samyam Rajbhandari
Minjia Zhang
Wenhan Wang
Fang Liu
Bin Hu
Yiran Chen
H. Li
MQ
35
140
0
15 Sep 2017
Domain-adaptive deep network compression
Domain-adaptive deep network compression
Marc Masana
Joost van de Weijer
Luis Herranz
Andrew D. Bagdanov
J. Álvarez
41
62
0
04 Sep 2017
Lifelong Learning with Dynamically Expandable Networks
Lifelong Learning with Dynamically Expandable Networks
Jaehong Yoon
Eunho Yang
Jeongtae Lee
Sung Ju Hwang
CLL
14
1,201
0
04 Aug 2017
Neuron Pruning for Compressing Deep Networks using Maxout Architectures
Neuron Pruning for Compressing Deep Networks using Maxout Architectures
Fernando Moya Rueda
René Grzeszick
G. Fink
CVBM
22
17
0
21 Jul 2017
Channel Pruning for Accelerating Very Deep Neural Networks
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
86
2,505
0
19 Jul 2017
Data-Driven Sparse Structure Selection for Deep Neural Networks
Data-Driven Sparse Structure Selection for Deep Neural Networks
Zehao Huang
Naiyan Wang
53
558
0
05 Jul 2017
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
16
119
0
29 May 2017
Structural Compression of Convolutional Neural Networks
Structural Compression of Convolutional Neural Networks
R. Abbasi-Asl
Bin-Xia Yu
33
16
0
20 May 2017
Building effective deep neural network architectures one feature at a
  time
Building effective deep neural network architectures one feature at a time
Martin Mundt
Tobias Weis
K. Konda
Visvanathan Ramesh
24
1
0
18 May 2017
DNA Steganalysis Using Deep Recurrent Neural Networks
DNA Steganalysis Using Deep Recurrent Neural Networks
Ho Bae
Byunghan Lee
Sunyoung Kwon
Sungroh Yoon
19
9
0
27 Apr 2017
Coordinating Filters for Faster Deep Neural Networks
Coordinating Filters for Faster Deep Neural Networks
W. Wen
Cong Xu
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
16
138
0
28 Mar 2017
Deep Stochastic Configuration Networks with Universal Approximation
  Property
Deep Stochastic Configuration Networks with Universal Approximation Property
Dianhui Wang
Ming Li
BDL
13
6
0
18 Feb 2017
Previous
12345
Next