Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.06585
Cited By
v1
v2 (latest)
Variational Boosting: Iteratively Refining Posterior Approximations
20 November 2016
Andrew C. Miller
N. Foti
Ryan P. Adams
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Boosting: Iteratively Refining Posterior Approximations"
48 / 48 papers shown
Title
Asymptotically exact variational flows via involutive MCMC kernels
Zuheng Xu
Trevor Campbell
28
0
0
02 Jun 2025
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
102
0
0
07 Apr 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
126
1
0
30 Oct 2024
Batch, match, and patch: low-rank approximations for score-based variational inference
Chirag Modi
Diana Cai
Lawrence K. Saul
BDL
99
3
0
29 Oct 2024
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
126
17
0
23 Sep 2022
VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition
Randy Ardywibowo
Shahin Boluki
Zhangyang Wang
Bobak J. Mortazavi
Shuai Huang
Xiaoning Qian
43
2
0
31 Mar 2022
Cyclical Variational Bayes Monte Carlo for Efficient Multi-Modal Posterior Distributions Evaluation
F. Igea
Alice Cicirello
52
8
0
23 Feb 2022
Implicit copula variational inference
M. Smith
Rubén Loaiza-Maya
46
7
0
18 Nov 2021
Statistical Perspectives on Reliability of Artificial Intelligence Systems
Yili Hong
J. Lian
Li Xu
Jie Min
Yueyao Wang
Laura J. Freeman
Xinwei Deng
68
33
0
09 Nov 2021
Is MC Dropout Bayesian?
Loic Le Folgoc
V. Baltatzis
S. Desai
A. Devaraj
S. Ellis
O. M. Manzanera
A. Nair
Huaqi Qiu
Julia A. Schnabel
Ben Glocker
BDL
OOD
UQCV
98
41
0
08 Oct 2021
Variational Marginal Particle Filters
Jinlin Lai
Justin Domke
Daniel Sheldon
95
9
0
30 Sep 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Boosting Variational Inference With Locally Adaptive Step-Sizes
Gideon Dresdner
Saurav Shekhar
Fabian Pedregosa
Francesco Locatello
Gunnar Rätsch
41
2
0
19 May 2021
The computational asymptotics of Gaussian variational inference and the Laplace approximation
Zuheng Xu
Trevor Campbell
105
8
0
13 Apr 2021
Boltzmann Tuning of Generative Models
Victor Berger
Michele Sebag
50
0
0
12 Apr 2021
Recursive Inference for Variational Autoencoders
Minyoung Kim
Vladimir Pavlovic
DRL
50
13
0
17 Nov 2020
Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting
B. Guha
A. Bhattacharya
D. Pati
78
2
0
19 Oct 2020
Learning from demonstration using products of experts: applications to manipulation and task prioritization
Emmanuel Pignat
João Silvério
Sylvain Calinon
46
18
0
07 Oct 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
98
63
0
22 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
102
42
0
15 Jun 2020
Gradient Boosted Normalizing Flows
Robert Giaquinto
A. Banerjee
BDL
DRL
16
1
0
27 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
74
47
0
07 Feb 2020
Parameter Space Factorization for Zero-Shot Learning across Tasks and Languages
Edoardo Ponti
Ivan Vulić
Ryan Cotterell
Marinela Parović
Roi Reichart
Anna Korhonen
BDL
114
29
0
30 Jan 2020
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
90
37
0
09 Oct 2019
BooVAE: Boosting Approach for Continual Learning of VAE
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
CLL
98
26
0
30 Aug 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
76
20
0
10 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
193
114
0
24 Jun 2019
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
59
32
0
04 Jun 2019
Variational Inference with Mixture Model Approximation: Robotic Applications
Emmanuel Pignat
Teguh Santoso Lembono
Sylvain Calinon
19
2
0
23 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
71
8
0
23 May 2019
Conditionally structured variational Gaussian approximation with importance weights
Linda S. L. Tan
Aishwarya Bhaskaran
David J. Nott
125
13
0
21 Apr 2019
High-dimensional copula variational approximation through transformation
M. Smith
Rubén Loaiza-Maya
David J. Nott
79
33
0
16 Apr 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
67
6
0
11 Feb 2019
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
90
60
0
11 Nov 2018
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
130
22
0
18 Oct 2018
Variational Bayesian Monte Carlo
Luigi Acerbi
BDL
68
66
0
12 Oct 2018
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
Scott A. Sisson
AAML
103
69
0
27 Sep 2018
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
134
57
0
06 Aug 2018
Boosting Black Box Variational Inference
Francesco Locatello
Gideon Dresdner
Rajiv Khanna
Isabel Valera
Gunnar Rätsch
81
32
0
06 Jun 2018
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
121
11
0
05 Jun 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
89
128
0
28 May 2018
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
112
40
0
24 Jan 2018
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
B. Thijssen
L. Wessels
56
9
0
12 Dec 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
233
698
0
15 Nov 2017
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
135
94
0
10 Apr 2017
Boosted Generative Models
Aditya Grover
Stefano Ermon
82
51
0
27 Feb 2017
Boosting Variational Inference
Fangjian Guo
Xiangyu Wang
Kai Fan
Tamara Broderick
David B. Dunson
BDL
152
76
0
17 Nov 2016
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
186
60
0
24 Feb 2014
1