ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06740
  4. Cited By
Variational Fourier features for Gaussian processes
v1v2 (latest)

Variational Fourier features for Gaussian processes

21 November 2016
J. Hensman
N. Durrande
Arno Solin
    VLM
ArXiv (abs)PDFHTML

Papers citing "Variational Fourier features for Gaussian processes"

32 / 32 papers shown
Title
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
Sasan Vakili
Manuel Mazo Jr.
Peyman Mohajerin Esfahani
127
0
0
07 Apr 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
200
2
0
29 Oct 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
165
0
0
01 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
134
7
0
30 Jun 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
116
0
0
17 May 2024
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Marie Viset
Rudy Helmons
Manon Kok
96
1
0
17 Oct 2022
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
89
665
0
27 Oct 2016
Regularizing Solutions to the MEG Inverse Problem Using Space-Time
  Separable Covariance Functions
Regularizing Solutions to the MEG Inverse Problem Using Space-Time Separable Covariance Functions
Arno Solin
Pasi Jylänki
Jaakko Kauramaki
Tom Heskes
Marcel van Gerven
Simo Särkkä
44
9
0
17 Apr 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
351
4,821
0
04 Jan 2016
Thoughts on Massively Scalable Gaussian Processes
Thoughts on Massively Scalable Gaussian Processes
A. Wilson
Christoph Dann
H. Nickisch
108
110
0
05 Nov 2015
Gaussian Process Random Fields
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
42
19
0
31 Oct 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
76
21
0
27 Oct 2015
String and Membrane Gaussian Processes
String and Membrane Gaussian Processes
Yves-Laurent Kom Samo
Stephen J. Roberts
71
18
0
24 Jul 2015
MCMC for Variationally Sparse Gaussian Processes
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
83
141
0
12 Jun 2015
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
84
307
0
03 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
106
192
0
27 Apr 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
82
78
0
09 Mar 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
96
514
0
03 Mar 2015
Gaussian Processes for Data-Efficient Learning in Robotics and Control
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
150
695
0
10 Feb 2015
Distributed Gaussian Processes
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
92
342
0
10 Feb 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
105
31
0
22 Jan 2015
A la Carte - Learning Fast Kernels
A la Carte - Learning Fast Kernels
Zichao Yang
Alex Smola
Le Song
A. Wilson
96
133
0
19 Dec 2014
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
89
646
0
07 Nov 2014
Variational Inference for Gaussian Process Modulated Poisson Processes
Variational Inference for Gaussian Process Modulated Poisson Processes
C. Lloyd
Tom Gunter
Michael A. Osborne
Stephen J. Roberts
77
117
0
02 Nov 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
115
1,237
0
26 Sep 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
103
611
0
18 Feb 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GPBDL
154
1,184
0
02 Nov 2012
INLA or MCMC? A Tutorial and Comparative Evaluation for Spatial
  Prediction in log-Gaussian Cox Processes
INLA or MCMC? A Tutorial and Comparative Evaluation for Spatial Prediction in log-Gaussian Cox Processes
Benjamin M. Taylor
P. Diggle
92
102
0
08 Feb 2012
Additive Gaussian Processes
Additive Gaussian Processes
David Duvenaud
H. Nickisch
C. Rasmussen
GP
116
331
0
19 Dec 2011
Additive Covariance Kernels for High-Dimensional Gaussian Process
  Modeling
Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
L. Carraro
101
102
0
27 Nov 2011
Slice sampling covariance hyperparameters of latent Gaussian models
Slice sampling covariance hyperparameters of latent Gaussian models
Iain Murray
Ryan P. Adams
129
232
0
04 Jun 2010
Elliptical slice sampling
Elliptical slice sampling
Iain Murray
Ryan P. Adams
D. MacKay
157
465
0
31 Dec 2009
1