ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06740
  4. Cited By
Variational Fourier features for Gaussian processes
v1v2 (latest)

Variational Fourier features for Gaussian processes

21 November 2016
J. Hensman
N. Durrande
Arno Solin
    VLM
ArXiv (abs)PDFHTML

Papers citing "Variational Fourier features for Gaussian processes"

50 / 138 papers shown
Title
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
Sawan Kumar
Tapas Tripura
R. Nayek
S. Chakraborty
5
0
0
18 Jun 2025
Constraint-Aware Diffusion Guidance for Robotics: Real-Time Obstacle Avoidance for Autonomous Racing
Constraint-Aware Diffusion Guidance for Robotics: Real-Time Obstacle Avoidance for Autonomous Racing
Hao Ma
Sabrina Bodmer
Andrea Carron
Melanie Zeilinger
Michael Muehlebach
59
0
0
19 May 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
55
0
0
19 May 2025
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
Optimal Bayesian Affine Estimator and Active Learning for the Wiener Model
Sasan Vakili
Manuel Mazo Jr.
Peyman Mohajerin Esfahani
127
0
0
07 Apr 2025
Modeling Neural Activity with Conditionally Linear Dynamical Systems
Modeling Neural Activity with Conditionally Linear Dynamical Systems
Victor Geadah
Amin Nejatbakhsh
David Lipshutz
Jonathan W. Pillow
Alex H. Williams
AI4CE
285
0
0
25 Feb 2025
Computation-Aware Gaussian Processes: Model Selection And Linear-Time
  Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
84
7
0
01 Nov 2024
Gaussian Derivative Change-point Detection for Early Warnings of
  Industrial System Failures
Gaussian Derivative Change-point Detection for Early Warnings of Industrial System Failures
Hao Zhao
Rong Pan
83
1
0
29 Oct 2024
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
200
2
0
29 Oct 2024
Latent mixed-effect models for high-dimensional longitudinal data
Latent mixed-effect models for high-dimensional longitudinal data
Priscilla Ong
Manuel Haußmann
Otto Lönnroth
Harri Lähdesmäki
42
0
0
17 Sep 2024
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
52
3
0
12 Sep 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel
  Precision Matrices
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
104
0
0
05 Aug 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
62
0
0
01 Aug 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
167
0
0
01 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
134
7
0
30 Jun 2024
Stein Random Feature Regression
Stein Random Feature Regression
Houston Warren
Rafael Oliveira
Fabio Ramos
BDL
92
0
0
01 Jun 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
118
0
0
17 May 2024
Dynamic Online Ensembles of Basis Expansions
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
93
5
0
02 May 2024
Fast Adaptive Fourier Integration for Spectral Densities of Gaussian
  Processes
Fast Adaptive Fourier Integration for Spectral Densities of Gaussian Processes
Paul G. Beckman
Christopher J. Geoga
56
1
0
29 Apr 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
118
0
0
28 Mar 2024
Hyperbolic Secant representation of the logistic function: Application
  to probabilistic Multiple Instance Learning for CT intracranial hemorrhage
  detection
Hyperbolic Secant representation of the logistic function: Application to probabilistic Multiple Instance Learning for CT intracranial hemorrhage detection
Francisco M. Castro-Macías
Pablo Morales-Álvarez
Yunan Wu
Rafael Molina
Aggelos K. Katsaggelos
23
2
0
21 Mar 2024
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process
  Regression
Kernel Multigrid: Accelerate Back-fitting via Sparse Gaussian Process Regression
Lu Zou
Liang Ding
78
0
0
20 Mar 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active
  Learning
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
74
3
0
28 Feb 2024
A General Theory for Kernel Packets: from state space model to compactly
  supported basis
A General Theory for Kernel Packets: from state space model to compactly supported basis
Liang Ding
Rui Tuo
21
1
0
06 Feb 2024
Multi-modal Gaussian Process Variational Autoencoders for Neural and
  Behavioral Data
Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data
Rabia Gondur
Usama Bin Sikandar
Evan Schaffer
Mikio C. Aoi
Stephen L. Keeley
DRL
47
9
0
04 Oct 2023
Pointwise uncertainty quantification for sparse variational Gaussian
  process regression with a Brownian motion prior
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
59
4
0
29 Sep 2023
Convolutional Deep Kernel Machines
Convolutional Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
BDL
96
5
0
18 Sep 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State
  Space Models
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
88
3
0
13 Sep 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor
  Network Models
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
55
1
0
11 Sep 2023
Integrated Variational Fourier Features for Fast Spatial Modelling with
  Gaussian Processes
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Talay M Cheema
C. Rasmussen
GP
122
2
0
27 Aug 2023
Bayesian Non-linear Latent Variable Modeling via Random Fourier Features
Bayesian Non-linear Latent Variable Modeling via Random Fourier Features
M. Zhang
Gregory W. Gundersen
Barbara Engelhardt
BDL
25
2
0
14 Jun 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian
  Processes
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
50
0
0
27 Apr 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
89
7
0
11 Apr 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
66
9
0
20 Feb 2023
Scalable Gaussian Process Inference with Stan
Scalable Gaussian Process Inference with Stan
Till Hoffmann
J. Onnela
GP
35
4
0
21 Jan 2023
REDS: Random Ensemble Deep Spatial prediction
REDS: Random Ensemble Deep Spatial prediction
Ranadeep Daw
C. Wikle
39
10
0
09 Nov 2022
Ice Core Dating using Probabilistic Programming
Ice Core Dating using Probabilistic Programming
Aditya Ravuri
Tom R. Andersson
Ieva Kazlauskaite
Will Tebbutt
Richard Turner
J. S. Hosking
Neil D. Lawrence
Markus Kaiser
27
0
0
29 Oct 2022
Equispaced Fourier representations for efficient Gaussian process
  regression from a billion data points
Equispaced Fourier representations for efficient Gaussian process regression from a billion data points
P. Greengard
M. Rachh
A. Barnett
74
12
0
18 Oct 2022
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Marie Viset
Rudy Helmons
Manon Kok
96
1
0
17 Oct 2022
Spectral Diffusion Processes
Spectral Diffusion Processes
Angus Phillips
Thomas Seror
M. Hutchinson
Valentin De Bortoli
Arnaud Doucet
Emile Mathieu
DiffM
132
17
0
28 Sep 2022
Deep Variational Implicit Processes
Deep Variational Implicit Processes
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
63
5
0
14 Jun 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
131
13
0
12 May 2022
Causal Transformer for Estimating Counterfactual Outcomes
Causal Transformer for Estimating Counterfactual Outcomes
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
107
99
0
14 Apr 2022
Local Random Feature Approximations of the Gaussian Kernel
Local Random Feature Approximations of the Gaussian Kernel
Jonas Wacker
Maurizio Filippone
89
5
0
12 Apr 2022
Modelling Non-Smooth Signals with Complex Spectral Structure
Modelling Non-Smooth Signals with Complex Spectral Structure
W. Bruinsma
Martin Tegnér
Richard Turner
72
6
0
14 Mar 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
78
3
0
22 Feb 2022
Variational Nearest Neighbor Gaussian Process
Variational Nearest Neighbor Gaussian Process
Luhuan Wu
Geoff Pleiss
John P. Cunningham
BDL
94
15
0
03 Feb 2022
Improved Random Features for Dot Product Kernels
Improved Random Features for Dot Product Kernels
Jonas Wacker
Motonobu Kanagawa
Maurizio Filippone
57
8
0
21 Jan 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
Bridging the reality gap in quantum devices with physics-aware machine
  learning
Bridging the reality gap in quantum devices with physics-aware machine learning
D. L. Craig
H. Moon
F. Fedele
D. Lennon
B. V. Straaten
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
63
15
0
22 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
72
35
0
02 Nov 2021
123
Next