ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.06740
  4. Cited By
Variational Fourier features for Gaussian processes
v1v2 (latest)

Variational Fourier features for Gaussian processes

21 November 2016
J. Hensman
N. Durrande
Arno Solin
    VLM
ArXiv (abs)PDFHTML

Papers citing "Variational Fourier features for Gaussian processes"

38 / 138 papers shown
Title
Conjugate Gradients for Kernel Machines
Conjugate Gradients for Kernel Machines
Simon Bartels
Philipp Hennig
61
4
0
14 Nov 2019
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
95
23
0
17 Sep 2019
Band-Limited Gaussian Processes: The Sinc Kernel
Band-Limited Gaussian Processes: The Sinc Kernel
Felipe A. Tobar
40
20
0
16 Sep 2019
Kernel Mode Decomposition and programmable/interpretable regression
  networks
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
95
5
0
19 Jul 2019
Sparse Spectrum Gaussian Process for Bayesian Optimization
Sparse Spectrum Gaussian Process for Bayesian Optimization
Ang Yang
Cheng Li
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
56
5
0
21 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
75
77
0
19 Jun 2019
Deep Compositional Spatial Models
Deep Compositional Spatial Models
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
124
57
0
06 Jun 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
49
18
0
27 May 2019
Learning spectrograms with convolutional spectral kernels
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
62
9
0
23 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
66
23
0
10 Apr 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
Low-pass filtering as Bayesian inference
Low-pass filtering as Bayesian inference
Cristobal Valenzuela
Felipe A. Tobar
AI4TS
26
2
0
09 Feb 2019
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
William J. Wilkinson
Michael Riis Andersen
Joshua D. Reiss
D. Stowell
Arno Solin
51
5
0
31 Jan 2019
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
50
9
0
27 Nov 2018
Infinite-Horizon Gaussian Processes
Infinite-Horizon Gaussian Processes
Arno Solin
J. Hensman
Richard Turner
50
28
0
15 Nov 2018
Large-scale Heteroscedastic Regression via Gaussian Process
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
59
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
72
26
0
03 Nov 2018
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in
  the Time-Domain
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in the Time-Domain
Pablo A. Alvarado
Mauricio A. Alvarez
D. Stowell
16
7
0
30 Oct 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
81
17
0
10 Oct 2018
GPdoemd: a Python package for design of experiments for model
  discrimination
GPdoemd: a Python package for design of experiments for model discrimination
Simon Olofsson
Lukas Hebing
Sebastian Niedenführ
M. Deisenroth
Ruth Misener
49
18
0
05 Oct 2018
Symmetry Exploits for Bayesian Cubature Methods
Symmetry Exploits for Bayesian Cubature Methods
Toni Karvonen
Simo Särkkä
Chris J. Oates
56
15
0
26 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
70
43
0
24 Sep 2018
Bayesian Nonparametric Spectral Estimation
Bayesian Nonparametric Spectral Estimation
Felipe A. Tobar
50
30
0
06 Sep 2018
Bayesian quadrature and energy minimization for space-filling design
Bayesian quadrature and energy minimization for space-filling design
L. Pronzato
A. Zhigljavsky
112
9
0
31 Aug 2018
Compressible Spectral Mixture Kernels with Sparse Dependency Structures
  for Gaussian Processes
Compressible Spectral Mixture Kernels with Sparse Dependency Structures for Gaussian Processes
Kai Chen
Yijue Dai
Feng Yin
Shuguang Cui
Sergios Theodoridis
53
3
0
01 Aug 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Large-Scale Cox Process Inference using Variational Fourier Features
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
57
31
0
03 Apr 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
74
32
0
13 Feb 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
59
75
0
28 Nov 2017
Forecasting of commercial sales with large scale Gaussian Processes
Forecasting of commercial sales with large scale Gaussian Processes
Rodrigo Rivera
Evgeny Burnaev
44
22
0
16 Sep 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
85
132
0
06 Sep 2017
Spectral Mixture Kernels for Multi-Output Gaussian Processes
Spectral Mixture Kernels for Multi-Output Gaussian Processes
Gabriel Parra
Felipe A. Tobar
61
79
0
05 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
73
60
0
16 Aug 2017
Efficient Learning of Harmonic Priors for Pitch Detection in Polyphonic
  Music
Efficient Learning of Harmonic Priors for Pitch Detection in Polyphonic Music
Pablo A. Alvarado
D. Stowell
30
7
0
19 May 2017
Parametric Gaussian Process Regression for Big Data
Parametric Gaussian Process Regression for Big Data
M. Raissi
89
39
0
11 Apr 2017
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
64
28
0
02 Sep 2016
Modeling and interpolation of the ambient magnetic field by Gaussian
  processes
Modeling and interpolation of the ambient magnetic field by Gaussian processes
Arno Solin
Manon Kok
Niklas Wahlström
Thomas B. Schon
Simo Särkkä
42
119
0
15 Sep 2015
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
233
218
0
21 Jan 2014
Previous
123