Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.00188
Cited By
Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections
1 December 2016
Zakaria Mhammedi
Andrew D. Hellicar
Ashfaqur Rahman
James Bailey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections"
27 / 27 papers shown
Title
Compact Recurrent Transformer with Persistent Memory
Edison Mucllari
Z. Daniels
David C. Zhang
Qiang Ye
CLL
VLM
51
0
0
02 May 2025
HadamRNN: Binary and Sparse Ternary Orthogonal RNNs
Armand Foucault
Franck Mamalet
François Malgouyres
MQ
74
0
0
28 Jan 2025
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
Fanchen Bu
D. Chang
28
6
0
12 May 2022
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
43
32
0
10 Mar 2022
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Cristian Bodnar
Francesco Di Giovanni
B. Chamberlain
Pietro Lio
Michael M. Bronstein
32
170
0
09 Feb 2022
Stable Long-Term Recurrent Video Super-Resolution
Benjamin Naoto Chiche
Arnaud Woiselle
J. Frontera-Pons
Jean-Luc Starck
SupR
30
6
0
16 Dec 2021
Learning Connectivity with Graph Convolutional Networks for Skeleton-based Action Recognition
H. Sahbi
GNN
23
27
0
06 Dec 2021
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
38
56
0
10 Oct 2021
Acceleration Method for Learning Fine-Layered Optical Neural Networks
K. Aoyama
H. Sawada
27
1
0
01 Sep 2021
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
34
10
0
30 Jul 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
Physics-Informed Neural State Space Models via Learning and Evolution
Elliott Skomski
Ján Drgoňa
Aaron Tuor
PINN
AI4CE
27
9
0
26 Nov 2020
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
31
314
0
05 Feb 2020
Contracting Implicit Recurrent Neural Networks: Stable Models with Improved Trainability
Max Revay
I. Manchester
6
43
0
22 Dec 2019
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
21
36
0
07 Jun 2019
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
Mario Lezcano Casado
David Martínez-Rubio
21
194
0
24 Jan 2019
How Robust are Deep Neural Networks?
B. Sengupta
Karl J. Friston
OOD
25
31
0
30 Apr 2018
Orthogonal Recurrent Neural Networks with Scaled Cayley Transform
Kyle E. Helfrich
Devin Willmott
Q. Ye
45
128
0
29 Jul 2017
Gated Orthogonal Recurrent Units: On Learning to Forget
Li Jing
Çağlar Gülçehre
J. Peurifoy
Yichen Shen
Max Tegmark
Marin Soljacic
Yoshua Bengio
35
126
0
08 Jun 2017
Kronecker Recurrent Units
C. Jose
Moustapha Cissé
F. Fleuret
ODL
24
45
0
29 May 2017
On orthogonality and learning recurrent networks with long term dependencies
Eugene Vorontsov
C. Trabelsi
Samuel Kadoury
C. Pal
ODL
33
238
0
31 Jan 2017
Learning Unitary Operators with Help From u(n)
Stephanie L. Hyland
Gunnar Rätsch
97
41
0
17 Jul 2016
1