Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.07846
Cited By
A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements
23 December 2016
Daniel Durstewitz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements"
7 / 7 papers shown
Title
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Christoph Jürgen Hemmer
Daniel Durstewitz
AI4TS
SyDa
AI4CE
17
0
0
19 May 2025
A scalable generative model for dynamical system reconstruction from neuroimaging data
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
33
2
0
05 Nov 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
43
7
0
24 Jun 2024
Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
Christoph Jürgen Hemmer
Manuel Brenner
Florian Hess
Daniel Durstewitz
43
4
0
07 Jun 2024
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
51
75
0
21 May 2023
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
42
30
0
06 Jul 2022
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
27
19
0
04 Nov 2021
1