Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1612.07846
Cited By
A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements
23 December 2016
Daniel Durstewitz
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements"
20 / 20 papers shown
Title
BRAID: Input-Driven Nonlinear Dynamical Modeling of Neural-Behavioral Data
Parsa Vahidi
Omid G. Sani
Maryam M. Shanechi
AI4CE
132
6
0
23 Sep 2025
POCO: Scalable Neural Forecasting through Population Conditioning
Yu Duan
Hamza Tahir Chaudhry
Misha B. Ahrens
Christopher D Harvey
Matthew G Perich
Karl Deisseroth
Kanaka Rajan
AI4CE
149
2
0
17 Jun 2025
Uncovering the Functional Roles of Nonlinearity in Memory
Manuel Brenner
G. Koppe
171
0
0
09 Jun 2025
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Christoph Jürgen Hemmer
Daniel Durstewitz
AI4TS
SyDa
AI4CE
523
3
0
19 May 2025
A scalable generative model for dynamical system reconstruction from neuroimaging data
Neural Information Processing Systems (NeurIPS), 2024
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
172
5
0
05 Nov 2024
Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction
Neural Information Processing Systems (NeurIPS), 2024
Manuel Brenner
Christoph Jürgen Hemmer
Zahra Monfared
Daniel Durstewitz
AI4CE
149
7
0
18 Oct 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
751
17
0
24 Jun 2024
Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
International Conference on Machine Learning (ICML), 2024
Christoph Jürgen Hemmer
Manuel Brenner
Florian Hess
Daniel Durstewitz
222
5
0
07 Jun 2024
A Unified Theory of Exact Inference and Learning in Exponential Family Latent Variable Models
Sacha Sokoloski
184
1
0
30 Apr 2024
Learning Time-Invariant Representations for Individual Neurons from Population Dynamics
Neural Information Processing Systems (NeurIPS), 2023
Lu Mi
Trung Le
Tianxing He
Eli Shlizerman
U. Sümbül
145
9
0
03 Nov 2023
Generalized Teacher Forcing for Learning Chaotic Dynamics
International Conference on Machine Learning (ICML), 2023
Florian Hess
Zahra Monfared
Manuela Brenner
Daniel Durstewitz
AI4CE
372
50
0
07 Jun 2023
Discovering Causal Relations and Equations from Data
Physics reports (Phys. Rep.), 2023
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
214
106
0
21 May 2023
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
International Conference on Machine Learning (ICML), 2022
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
402
40
0
06 Jul 2022
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
International Conference on Machine Learning (ICML), 2021
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
256
23
0
04 Nov 2021
Building population models for large-scale neural recordings: opportunities and pitfalls
Current Opinion in Neurobiology (Curr Opin Neurobiol), 2021
C. Hurwitz
N. Kudryashova
A. Onken
Matthias H Hennig
202
42
0
03 Feb 2021
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haussmann
S. Gerwinn
Andreas Look
Barbara Rakitsch
M. Kandemir
278
18
0
17 Jun 2020
Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems
Journal of Computational Physics (JCP), 2019
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
407
37
0
30 Dec 2019
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies
Dominik Schmidt
G. Koppe
Zahra Monfared
Max Beutelspacher
Daniel Durstewitz
AI4CE
224
7
0
08 Oct 2019
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
174
87
0
19 Feb 2019
Physics-constrained, data-driven discovery of coarse-grained dynamics
L. Felsberger
P. Koutsourelakis
AI4CE
162
20
0
11 Feb 2018
1