Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.03180
Cited By
Stochastic Configuration Networks: Fundamentals and Algorithms
10 February 2017
Dianhui Wang
Ming Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Configuration Networks: Fundamentals and Algorithms"
23 / 23 papers shown
Title
Recurrent Stochastic Configuration Networks for Temporal Data Analytics
Dianhui Wang
Gang Dang
29
4
0
21 Jun 2024
Cloud Ensemble Learning for Fault Diagnosis of Rolling Bearings with Stochastic Configuration Networks
Wei Dai
Jiang Liu
Lanhao Wang
19
13
0
02 Jul 2023
Reliable Prediction Intervals with Directly Optimized Inductive Conformal Regression for Deep Learning
Haocheng Lei
A. Bellotti
26
6
0
02 Feb 2023
Bort: Towards Explainable Neural Networks with Bounded Orthogonal Constraint
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
AAML
25
7
0
18 Dec 2022
A New Learning Paradigm for Stochastic Configuration Network: SCN+
Yanshuang Ao
Xinyu Zhou
Wei Dai
15
1
0
11 Mar 2022
Weighting and Pruning based Ensemble Deep Random Vector Functional Link Network for Tabular Data Classification
Qi-Shi Shi
Ponnuthurai Nagaratnam Suganthan
Rakesh Katuwal
6
22
0
15 Jan 2022
Feature extraction and classification algorithm, which one is more essential? An experimental study on a specific task of vibration signal diagnosis
Qiang Liu
Jiade Zhang
Jingna Liu
Zhi-qun Yang
14
13
0
17 Dec 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
16
33
0
02 Jul 2021
Demystification of Few-shot and One-shot Learning
I. Tyukin
A. Gorban
Muhammad H. Alkhudaydi
Qinghua Zhou
16
13
0
25 Apr 2021
A Modified Batch Intrinsic Plasticity Method for Pre-training the Random Coefficients of Extreme Learning Machines
S. Dong
Zongwei Li
17
29
0
14 Mar 2021
Cluster-based Input Weight Initialization for Echo State Networks
Peter Steiner
A. Jalalvand
P. Birkholz
20
13
0
08 Mar 2021
Deep Randomized Neural Networks
Claudio Gallicchio
Simone Scardapane
OOD
45
61
0
27 Feb 2020
Error-feedback stochastic modeling strategy for time series forecasting with convolutional neural networks
Xinze Zhang
Kun He
Yukun Bao
AI4TS
17
9
0
03 Feb 2020
Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons
G. Marcucci
D. Pierangeli
Claudio Conti
24
109
0
15 Dec 2019
Blessing of dimensionality at the edge
I. Tyukin
Alexander N. Gorban
A. McEwan
Sepehr Meshkinfamfard
Lixin Tang
13
8
0
30 Sep 2019
Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks
Denis Kleyko
Mansour Kheffache
E. P. Frady
U. Wiklund
Evgeny Osipov
19
45
0
19 Sep 2019
Fast Construction of Correcting Ensembles for Legacy Artificial Intelligence Systems: Algorithms and a Case Study
I. Tyukin
Alexander N. Gorban
Stephen Green
Danil Prokhorov
19
15
0
12 Oct 2018
Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams
Mahardhika Pratama
Andri Ashfahani
Yew-Soon Ong
Savitha Ramasamy
E. Lughofer
6
15
0
24 Sep 2018
Randomized Mixture Models for Probability Density Approximation and Estimation
Hien Nguyen
Dianhui Wang
Geoffrey J. McLachlan
9
9
0
23 Apr 2018
Blessing of dimensionality: mathematical foundations of the statistical physics of data
A. N. Gorban
I. Tyukin
24
145
0
10 Jan 2018
A Method of Generating Random Weights and Biases in Feedforward Neural Networks with Random Hidden Nodes
Grzegorz Dudek
13
45
0
13 Oct 2017
Stochastic Configuration Networks Ensemble for Large-Scale Data Analytics
Dianhui Wang
Caihao Cui
BDL
22
112
0
02 Jul 2017
Parsimonious Random Vector Functional Link Network for Data Streams
Mahardhika Pratama
Plamen Angelov
E. Lughofer
6
46
0
10 Apr 2017
1