Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.03849
Cited By
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
13 February 2017
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis"
21 / 21 papers shown
Title
Temperature is All You Need for Generalization in Langevin Dynamics and other Markov Processes
I. Harel
Yonathan Wolanowsky
Gal Vardi
Nathan Srebro
Daniel Soudry
AI4CE
34
0
0
25 May 2025
ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
Yunhong Min
Daehyeon Choi
Kyeongmin Yeo
Jihyun Lee
Minhyuk Sung
74
0
0
28 Mar 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
125
3
0
28 Jan 2025
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
336
1
0
08 Oct 2024
Uniform Generalization Bounds on Data-Dependent Hypothesis Sets via PAC-Bayesian Theory on Random Sets
Benjamin Dupuis
Paul Viallard
George Deligiannidis
Umut Simsekli
77
3
0
26 Apr 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
75
5
0
04 Apr 2024
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
57
13
0
23 Mar 2023
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
50
4
0
06 Sep 2022
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
45
95
0
18 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
68
50
0
14 Jun 2020
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali
Yan Sun
Robert Tibshirani
51
76
0
17 Mar 2020
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
91
44
0
23 Oct 2019
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
82
769
0
06 Nov 2016
Train faster, generalize better: Stability of stochastic gradient descent
Moritz Hardt
Benjamin Recht
Y. Singer
88
1,234
0
03 Sep 2015
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
50
410
0
17 Jul 2015
Sampling from a log-concave distribution with Projected Langevin Monte Carlo
Sébastien Bubeck
Ronen Eldan
Joseph Lehec
46
137
0
09 Jul 2015
On Graduated Optimization for Stochastic Non-Convex Problems
Elad Hazan
Kfir Y. Levy
Shai Shalev-Shwartz
41
115
0
12 Mar 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
112
1,056
0
06 Mar 2015
Escaping the Local Minima via Simulated Annealing: Optimization of Approximately Convex Functions
A. Belloni
Tengyuan Liang
Hariharan Narayanan
Alexander Rakhlin
79
77
0
28 Jan 2015
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
57
514
0
23 Dec 2014
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
A. Dalalyan
Alexandre B. Tsybakov
150
179
0
06 Mar 2009
1