ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08558
  4. Cited By
DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD
  Models for 2.5D Recognition

DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD Models for 2.5D Recognition

27 February 2017
Benjamin Planche
Ziyan Wu
Kai Ma
Shanhui Sun
Stefan Kluckner
Terrence Chen
Andreas Hutter
Sergey Zakharov
H. Kosch
Jan Ernst
    3DV
ArXivPDFHTML

Papers citing "DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD Models for 2.5D Recognition"

5 / 5 papers shown
Title
Active-Passive SimStereo -- Benchmarking the Cross-Generalization
  Capabilities of Deep Learning-based Stereo Methods
Active-Passive SimStereo -- Benchmarking the Cross-Generalization Capabilities of Deep Learning-based Stereo Methods
Laurent Valentin Jospin
A. Antony
Lian Xu
Hamid Laga
F. Boussaïd
Bennamoun
24
4
0
17 Sep 2022
Accurate Ground-Truth Depth Image Generation via Overfit Training of
  Point Cloud Registration using Local Frame Sets
Accurate Ground-Truth Depth Image Generation via Overfit Training of Point Cloud Registration using Local Frame Sets
Ji-Woo Kim
Minchang Kim
Y. Shin
Minyoung Chung
3DPC
24
1
0
14 Jul 2022
A Survey on RGB-D Datasets
A Survey on RGB-D Datasets
Alexandre Lopes
Roberto Souza
Hélio Pedrini
3DV
MDE
26
33
0
15 Jan 2022
Synthetic Data for Deep Learning
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for
  Object Grasping
Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping
Yunzhi Lin
Chao Tang
Fu-Jen Chu
Patricio A. Vela
3DPC
13
39
0
12 Sep 2019
1