Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.03633
Cited By
Learning Gradient Descent: Better Generalization and Longer Horizons
10 March 2017
Kaifeng Lyu
Shunhua Jiang
Jian Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Gradient Descent: Better Generalization and Longer Horizons"
50 / 61 papers shown
Title
Efficient End-to-End Learning for Decision-Making: A Meta-Optimization Approach
Rares Cristian
Pavithra Harsha
Georgia Perakis
Brian Quanz
12
0
0
16 May 2025
Optimization Problem Solving Can Transition to Evolutionary Agentic Workflows
Wenhao Li
Bo Jin
Mingyi Hong
Changhong Lu
Xiangfeng Wang
48
0
0
07 May 2025
Make Optimization Once and for All with Fine-grained Guidance
Mingjia Shi
Ruihan Lin
Xuxi Chen
Yuhao Zhou
Zezhen Ding
...
Tong Wang
Kai Wang
Zhangyang Wang
Jun Zhang
Tianlong Chen
55
1
0
14 Mar 2025
Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
Richa Upadhyay
Ronald Phlypo
Rajkumar Saini
Marcus Liwicki
40
0
0
21 Jan 2025
A Learn-to-Optimize Approach for Coordinate-Wise Step Sizes for Quasi-Newton Methods
Wei Lin
Qingyu Song
Hong Xu
94
1
0
25 Nov 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
39
1
0
17 Aug 2024
Semantic are Beacons: A Semantic Perspective for Unveiling Parameter-Efficient Fine-Tuning in Knowledge Learning
Renzhi Wang
Piji Li
37
4
0
28 May 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process
Zhenan Fan
Bissan Ghaddar
Xinglu Wang
Linzi Xing
Yong Zhang
Zirui Zhou
AI4CE
53
11
0
06 Jan 2024
Investigation into the Training Dynamics of Learned Optimizers
Jan Sobotka
Petr Simánek
Daniel Vasata
28
0
0
12 Dec 2023
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
A. Moudgil
Boris Knyazev
Eugene Belilovsky
40
1
0
02 Dec 2023
Learning to optimize by multi-gradient for multi-objective optimization
Linxi Yang
Xinmin Yang
L. Tang
18
1
0
01 Nov 2023
Is Scaling Learned Optimizers Worth It? Evaluating The Value of VeLO's 4000 TPU Months
Fady Rezk
Antreas Antoniou
Henry Gouk
Timothy M. Hospedales
ELM
16
1
0
27 Oct 2023
Deep Model Predictive Optimization
Jacob Sacks
Rwik Rana
Kevin Huang
Alex Spitzer
Guanya Shi
Byron Boots
46
7
0
06 Oct 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
34
12
0
29 May 2023
Stochastic Unrolled Federated Learning
Samar Hadou
Navid Naderializadeh
Alejandro Ribeiro
FedML
30
5
0
24 May 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
36
18
0
13 Mar 2023
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
Junjie Yang
Xuxi Chen
Tianlong Chen
Zhangyang Wang
Yitao Liang
18
2
0
28 Feb 2023
Learning to Generalize Provably in Learning to Optimize
Junjie Yang
Tianlong Chen
Mingkang Zhu
Fengxiang He
Dacheng Tao
Yitao Liang
Zhangyang Wang
31
6
0
22 Feb 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
28
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Learning to Optimize in Model Predictive Control
Jacob Sacks
Byron Boots
27
22
0
05 Dec 2022
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
Learning to Optimize Quasi-Newton Methods
Isaac Liao
Rumen Dangovski
Jakob N. Foerster
Marin Soljacic
38
4
0
11 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
65
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen Ma
Zixuan Liu
Xue Liu
94
35
0
24 Jul 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
32
36
0
27 May 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
38
32
0
22 Mar 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
45
19
0
13 Mar 2022
Optimizer Amalgamation
Tianshu Huang
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
MoMe
28
4
0
12 Mar 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
49
7
0
28 Jan 2022
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
33
2
0
24 Nov 2021
Self-Learning Tuning for Post-Silicon Validation
P. Domanski
Dirk Pflüger
J. Rivoir
Raphael Latty
24
5
0
17 Nov 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
93
0
10 Nov 2021
Efficient Meta Subspace Optimization
Yoni Choukroun
Michael Katz
25
1
0
28 Oct 2021
Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial Robustness
Xiao Yang
Yinpeng Dong
Wenzhao Xiang
Tianyu Pang
Hang Su
Jun Zhu
AAML
27
4
0
13 Oct 2021
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
Learn2Hop: Learned Optimization on Rough Landscapes
Amil Merchant
Luke Metz
S. Schoenholz
E. D. Cubuk
31
16
0
20 Jul 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
43
225
0
23 Mar 2021
Reverse engineering learned optimizers reveals known and novel mechanisms
Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Narain Sohl-Dickstein
22
21
0
04 Nov 2020
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
25
51
0
18 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
21
5
0
17 Aug 2020
MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks
Jun Shu
Yanwen Zhu
Qian Zhao
Zongben Xu
Deyu Meng
23
7
0
29 Jul 2020
MTL2L: A Context Aware Neural Optimiser
N. Kuo
Mehrtash Harandi
Nicolas Fourrier
Christian J. Walder
Gabriela Ferraro
H. Suominen
12
0
0
18 Jul 2020
Guarantees for Tuning the Step Size using a Learning-to-Learn Approach
Xiang Wang
Shuai Yuan
Chenwei Wu
Rong Ge
10
16
0
30 Jun 2020
1
2
Next