ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.03633
  4. Cited By
Learning Gradient Descent: Better Generalization and Longer Horizons

Learning Gradient Descent: Better Generalization and Longer Horizons

10 March 2017
Kaifeng Lyu
Shunhua Jiang
Jian Li
ArXivPDFHTML

Papers citing "Learning Gradient Descent: Better Generalization and Longer Horizons"

11 / 61 papers shown
Title
Improved Adversarial Training via Learned Optimizer
Improved Adversarial Training via Learned Optimizer
Yuanhao Xiong
Cho-Jui Hsieh
AAML
28
30
0
25 Apr 2020
Learning to be Global Optimizer
Learning to be Global Optimizer
Haotian Zhang
Jianyong Sun
Zongben Xu
6
3
0
10 Mar 2020
Using a thousand optimization tasks to learn hyperparameter search
  strategies
Using a thousand optimization tasks to learn hyperparameter search strategies
Luke Metz
Niru Maheswaranathan
Ruoxi Sun
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
20
45
0
27 Feb 2020
Pyramid Convolutional RNN for MRI Image Reconstruction
Pyramid Convolutional RNN for MRI Image Reconstruction
Eric Z. Chen
Puyang Wang
Xiao Chen
Terrence Chen
Shanhui Sun
13
41
0
02 Dec 2019
Learning to Learn by Zeroth-Order Oracle
Learning to Learn by Zeroth-Order Oracle
Yangjun Ruan
Yuanhao Xiong
Sashank J. Reddi
Sanjiv Kumar
Cho-Jui Hsieh
22
17
0
21 Oct 2019
ROAM: Recurrently Optimizing Tracking Model
ROAM: Recurrently Optimizing Tracking Model
Tianyu Yang
Pengfei Xu
Runbo Hu
Hua Chai
Antoni B. Chan
6
92
0
28 Jul 2019
HyperAdam: A Learnable Task-Adaptive Adam for Network Training
HyperAdam: A Learnable Task-Adaptive Adam for Network Training
Shipeng Wang
Jian Sun
Zongben Xu
ODL
25
22
0
22 Nov 2018
Understanding and correcting pathologies in the training of learned
  optimizers
Understanding and correcting pathologies in the training of learned optimizers
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
39
149
0
24 Oct 2018
Guided evolutionary strategies: Augmenting random search with surrogate
  gradients
Guided evolutionary strategies: Augmenting random search with surrogate gradients
Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Narain Sohl-Dickstein
22
20
0
26 Jun 2018
Meta Continual Learning
Meta Continual Learning
Risto Vuorio
D.-Y. Cho
Daejoong Kim
Jiwon Kim
CLL
11
28
0
11 Jun 2018
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Yuhuai Wu
Mengye Ren
Renjie Liao
Roger C. Grosse
22
138
0
06 Mar 2018
Previous
12