Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.04265
Cited By
v1
v2 (latest)
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
13 March 2017
Mohammad Emtiyaz Khan
Wu Lin
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models"
50 / 95 papers shown
Title
Federated ADMM from Bayesian Duality
Thomas Möllenhoff
S. Swaroop
Finale Doshi-Velez
Mohammad Emtiyaz Khan
FedML
37
1
0
16 Jun 2025
AutoBayes: A Compositional Framework for Generalized Variational Inference
Toby St Clere Smithe
Marco Perin
BDL
CoGe
102
0
0
24 Mar 2025
Diffusion-aware Censored Gaussian Processes for Demand Modelling
Filipe Rodrigues
DiffM
101
0
0
21 Jan 2025
Investigating Plausibility of Biologically Inspired Bayesian Learning in ANNs
Ram Zaveri
CLL
126
0
0
27 Nov 2024
Federated Learning with Uncertainty and Personalization via Efficient Second-order Optimization
Shivam Pal
Aishwarya Gupta
Saqib Sarwar
Piyush Rai
FedML
129
0
0
27 Nov 2024
Approximated Orthogonal Projection Unit: Stabilizing Regression Network Training Using Natural Gradient
Shaoqi Wang
Chunjie Yang
Siwei Lou
40
1
0
23 Sep 2024
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
72
1
0
20 Sep 2024
Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
74
7
0
25 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
87
2
0
04 Jun 2024
Fearless Stochasticity in Expectation Propagation
Jonathan So
Richard Turner
66
0
0
03 Jun 2024
Bayesian Online Natural Gradient (BONG)
Matt Jones
Peter Chang
Kevin P. Murphy
BDL
75
7
0
30 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
101
0
0
02 May 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
92
5
0
16 Mar 2024
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
62
5
0
03 Mar 2024
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
91
31
0
27 Feb 2024
Can We Remove the Square-Root in Adaptive Gradient Methods? A Second-Order Perspective
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard Turner
Alireza Makhzani
ODL
161
13
0
05 Feb 2024
Joint State Estimation and Noise Identification Based on Variational Optimization
Hua Lan
Shijie Zhao
Jinjie Hu
Zengfu Wang
Jing-Zhi Fu
41
2
0
15 Dec 2023
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard Turner
Alireza Makhzani
65
4
0
09 Dec 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
72
11
0
30 Oct 2023
Optimising Distributions with Natural Gradient Surrogates
Jonathan So
Richard Turner
34
1
0
18 Oct 2023
On variational inference and maximum likelihood estimation with the λ-exponential family
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
48
2
0
06 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
75
15
0
05 Oct 2023
Improvements on Scalable Stochastic Bayesian Inference Methods for Multivariate Hawkes Process
Alex Ziyu Jiang
Abel Rodríguez
54
1
0
26 Sep 2023
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
56
3
0
07 Jun 2023
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
133
6
0
03 Jun 2023
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Matthew Dowling
Yuan Zhao
Il Memming Park
72
6
0
01 Jun 2023
Revisiting Structured Variational Autoencoders
Yixiu Zhao
Scott W. Linderman
BDL
DRL
53
9
0
25 May 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
Real-Time Variational Method for Learning Neural Trajectory and its Dynamics
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
OffRL
74
6
0
18 May 2023
Variational Bayes Made Easy
Mohammad Emtiyaz Khan
BDL
51
1
0
27 Apr 2023
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
52
3
0
08 Mar 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
78
19
0
21 Feb 2023
Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning
Wu Lin
Valentin Duruisseaux
Melvin Leok
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
104
10
0
20 Feb 2023
Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes
Sean Nassimiha
Peter Dudfield
Jack Kelly
M. Deisenroth
So Takao
38
1
0
01 Feb 2023
Towards Improved Learning in Gaussian Processes: The Best of Two Worlds
Marcus Klasson
S. T. John
Arno Solin
BDL
GP
46
0
0
11 Nov 2022
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
86
3
0
09 Nov 2022
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Paul E. Chang
Prakhar Verma
S. T. John
Victor Picheny
Henry B. Moss
Arno Solin
GP
96
6
0
02 Nov 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
68
2
0
26 Oct 2022
Differentially private partitioned variational inference
Mikko A. Heikkilä
Matthew Ashman
S. Swaroop
Richard Turner
Antti Honkela
FedML
61
2
0
23 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
126
17
0
23 Sep 2022
Bayesian Continual Learning via Spiking Neural Networks
N. Skatchkovsky
Hyeryung Jang
Osvaldo Simeone
BDL
73
18
0
29 Aug 2022
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
111
17
0
12 Jul 2022
Quasi Black-Box Variational Inference with Natural Gradients for Bayesian Learning
M. Magris
M. Shabani
Alexandros Iosifidis
BDL
75
4
0
23 May 2022
Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets
M. Magris
M. Shabani
Alexandros Iosifidis
74
10
0
07 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
65
14
0
24 Feb 2022
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
Miao Zhang
Jilin Hu
Steven W. Su
Shirui Pan
Xiaojun Chang
B. Yang
Gholamreza Haffari
OOD
110
15
0
25 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
80
35
0
02 Nov 2021
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
95
16
0
02 Nov 2021
Conditioning Sparse Variational Gaussian Processes for Online Decision-making
Wesley J. Maddox
Samuel Stanton
A. Wilson
79
32
0
28 Oct 2021
1
2
Next