ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.04389
  4. Cited By
Bayesian Optimization with Gradients

Bayesian Optimization with Gradients

13 March 2017
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
ArXivPDFHTML

Papers citing "Bayesian Optimization with Gradients"

30 / 30 papers shown
Title
Batch Active Learning in Gaussian Process Regression using Derivatives
Batch Active Learning in Gaussian Process Regression using Derivatives
Hon Sum Alec Yu
Christoph Zimmer
D. Nguyen-Tuong
GP
31
1
0
03 Aug 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
44
4
0
07 Jun 2024
Active Learning for Abrupt Shifts Change-point Detection via
  Derivative-Aware Gaussian Processes
Active Learning for Abrupt Shifts Change-point Detection via Derivative-Aware Gaussian Processes
Hao Zhao
Rong Pan
16
1
0
05 Dec 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Generating Transferable Adversarial Simulation Scenarios for
  Self-Driving via Neural Rendering
Generating Transferable Adversarial Simulation Scenarios for Self-Driving via Neural Rendering
Yasasa Abeysirigoonawardena
Kevin Xie
Chuhan Chen
Salar Hosseini
Ruiting Chen
Ruiqi Wang
Florian Shkurti
36
2
0
27 Sep 2023
Gaussian Max-Value Entropy Search for Multi-Agent Bayesian Optimization
Gaussian Max-Value Entropy Search for Multi-Agent Bayesian Optimization
Haitong Ma
Tianpeng Zhang
Yixuan Wu
Flavio du Pin Calmon
Na Li
26
10
0
10 Mar 2023
Scalable Bayesian optimization with high-dimensional outputs using
  randomized prior networks
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
19
1
0
14 Feb 2023
Global Optimization with Parametric Function Approximation
Global Optimization with Parametric Function Approximation
Chong Liu
Yu-Xiang Wang
36
7
0
16 Nov 2022
Efficient computation of the Knowledge Gradient for Bayesian
  Optimization
Efficient computation of the Knowledge Gradient for Bayesian Optimization
Juan Ungredda
Michael Pearce
Juergen Branke
35
2
0
30 Sep 2022
Inference of Regulatory Networks Through Temporally Sparse Data
Inference of Regulatory Networks Through Temporally Sparse Data
Mohammad Alali
Mahdi Imani
22
17
0
21 Jul 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
20
35
0
02 Jan 2022
A portfolio approach to massively parallel Bayesian optimization
A portfolio approach to massively parallel Bayesian optimization
M. Binois
Nicholson T. Collier
J. Ozik
27
9
0
18 Oct 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
Using Distance Correlation for Efficient Bayesian Optimization
Using Distance Correlation for Efficient Bayesian Optimization
T. Kanazawa
44
3
0
17 Feb 2021
Bayesian optimization with improved scalability and derivative
  information for efficient design of nanophotonic structures
Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures
Xavier Garcia Santiago
Sven Burger
C. Rockstuhl
Philipp‐Immanuel Schneider
15
12
0
08 Jan 2021
Time series forecasting with Gaussian Processes needs priors
Time series forecasting with Gaussian Processes needs priors
Giorgio Corani
A. Benavoli
Marco Zaffalon
GP
AI4TS
13
27
0
17 Sep 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
Information Directed Sampling for Linear Partial Monitoring
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
16
46
0
25 Feb 2020
Static and Dynamic Values of Computation in MCTS
Static and Dynamic Values of Computation in MCTS
Eren Sezener
Peter Dayan
14
5
0
11 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
36
450
0
03 Oct 2019
BISTRO: Berkeley Integrated System for Transportation Optimization
BISTRO: Berkeley Integrated System for Transportation Optimization
Sidney A. Feygin
Jessica R. Lazarus
E. Forscher
Valentine Golfier-Vetterli
Jonathan W. Lee
Abhishek Gupta
Rashid A. Waraich
C. Sheppard
Alexandre M. Bayen
17
8
0
10 Aug 2019
Accelerating Experimental Design by Incorporating Experimenter Hunches
Accelerating Experimental Design by Incorporating Experimenter Hunches
Cheng Li
Santu Rana
Sunil R. Gupta
Vu Nguyen
Svetha Venkatesh
...
David Rubín de Celis Leal
Teo Slezak
Murray Height
M. Mohammed
I. Gibson
24
33
0
22 Jul 2019
Knowledge Gradient for Selection with Covariates: Consistency and
  Computation
Knowledge Gradient for Selection with Covariates: Consistency and Computation
Liang Ding
L. Hong
Haihui Shen
Xiaowei Zhang
BDL
13
27
0
12 Jun 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning
  with Unimodality Constraints
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TS
AI4CE
27
2
0
21 Mar 2019
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
13
1,737
0
08 Jul 2018
Maximizing acquisition functions for Bayesian optimization
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
46
240
0
25 May 2018
Multi-Information Source Optimization
Multi-Information Source Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
41
198
0
01 Mar 2016
1