Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1703.05160
Cited By
A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models
15 March 2017
Ryan Spring
Anshumali Shrivastava
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models"
27 / 27 papers shown
Title
Improved Stochastic Optimization of LogSumExp
E. Gladin
Alexey Kroshnin
Jia Jie Zhu
Pavel Dvurechensky
76
0
0
29 Sep 2025
Real-time Indexing for Large-scale Recommendation by Streaming Vector Quantization Retriever
Xingyan Bin
Jianfei Cui
Wujie Yan
Zhichen Zhao
Xintian Han
Chongyang Yan
Feng Zhang
Xun Zhou
Qi Wu
Zuotao Liu
81
6
0
15 Jan 2025
Hierarchical Structured Neural Network: Efficient Retrieval Scaling for Large Scale Recommendation
Kaushik Rangadurai
Siyang Yuan
Minhui Huang
Yiqun Liu
Golnaz Ghasemiesfeh
...
Vidhoon Viswanathan
Yan Dong
Liang Wang
Lin Yang
Chonglin Sun
166
0
0
10 Jan 2025
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs
ACM Conference on Recommender Systems (RecSys), 2024
Gleb Mezentsev
Danil I. Gusak
Ivan Oseledets
Evgeny Frolov
160
14
0
27 Sep 2024
RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders
International Conference on Information and Knowledge Management (CIKM), 2024
Danil I. Gusak
Gleb Mezentsev
Ivan Oseledets
Evgeny Frolov
269
8
0
05 Aug 2024
Memory Mosaics
International Conference on Learning Representations (ICLR), 2024
Jianyu Zhang
Niklas Nolte
Ranajoy Sadhukhan
Beidi Chen
Léon Bottou
VLM
309
7
0
10 May 2024
LookupFFN: Making Transformers Compute-lite for CPU inference
International Conference on Machine Learning (ICML), 2024
Zhanpeng Zeng
Michael Davies
Pranav Pulijala
Karthikeyan Sankaralingam
Vikas Singh
135
10
0
12 Mar 2024
Adaptive and Dynamic Multi-Resolution Hashing for Pairwise Summations
Lianke Qin
Aravind Reddy
Zhao Song
Zhaozhuo Xu
Danyang Zhuo
195
14
0
21 Dec 2022
Training Overparametrized Neural Networks in Sublinear Time
Yichuan Deng
Han Hu
Zhao Song
Omri Weinstein
Danyang Zhuo
BDL
231
29
0
09 Aug 2022
Cooperative Retriever and Ranker in Deep Recommenders
The Web Conference (WWW), 2022
Xunpeng Huang
Defu Lian
Jin Chen
Liu Zheng
Xing Xie
Enhong Chen
VLM
AI4TS
86
15
0
28 Jun 2022
Distributed SLIDE: Enabling Training Large Neural Networks on Low Bandwidth and Simple CPU-Clusters via Model Parallelism and Sparsity
Minghao Yan
Nicholas Meisburger
Tharun Medini
Anshumali Shrivastava
154
6
0
29 Jan 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Zhanpeng Zeng
Yunyang Xiong
Sathya Ravi
Shailesh Acharya
G. Fung
Vikas Singh
156
21
0
18 Nov 2021
Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filtering
Jin Chen
Defu Lian
Binbin Jin
Xunpeng Huang
Kai Zheng
Enhong Chen
BDL
208
28
0
13 Sep 2021
Efficient Inference via Universal LSH Kernel
Zichang Liu
Benjamin Coleman
Anshumali Shrivastava
60
1
0
21 Jun 2021
Kernel approximation on algebraic varieties
SIAM Journal on applied algebra and geometry (SIAM J. Appl. Algebra Geom.), 2021
Jason M. Altschuler
P. Parrilo
117
6
0
04 Jun 2021
A Tale of Two Efficient and Informative Negative Sampling Distributions
International Conference on Machine Learning (ICML), 2020
Shabnam Daghaghi
Tharun Medini
Nicholas Meisburger
Beidi Chen
Mengnan Zhao
Anshumali Shrivastava
108
10
0
31 Dec 2020
Deep Retrieval: Learning A Retrievable Structure for Large-Scale Recommendations
Weihao Gao
Xiangjun Fan
Chong-Jun Wang
Jiankai Sun
Kai Jia
Wen Xiao
Ruofan Ding
Xingyan Bin
Hui Yang
Xiaobing Liu
CML
186
26
0
12 Jul 2020
Climbing the WOL: Training for Cheaper Inference
Zichang Liu
Zhaozhuo Xu
A. Ji
Jonathan Li
Beidi Chen
Anshumali Shrivastava
TPM
191
7
0
02 Jul 2020
Sub-linear RACE Sketches for Approximate Kernel Density Estimation on Streaming Data
Benjamin Coleman
Anshumali Shrivastava
95
37
0
04 Dec 2019
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive Stochastic Gradient Estimation
Beidi Chen
Yingchen Xu
Anshumali Shrivastava
148
16
0
30 Oct 2019
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems
Beidi Chen
Tharun Medini
James Farwell
Sameh Gobriel
Charlie Tai
Anshumali Shrivastava
213
111
0
07 Mar 2019
Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data
Benjamin Coleman
Richard G. Baraniuk
Anshumali Shrivastava
133
7
0
18 Feb 2019
Doubly Sparse: Sparse Mixture of Sparse Experts for Efficient Softmax Inference
Shun Liao
Ting Chen
Tian Lin
Denny Zhou
Chong-Jun Wang
MoE
77
2
0
30 Jan 2019
Scaling-up Split-Merge MCMC with Locality Sensitive Sampling (LSS)
Chen Luo
Anshumali Shrivastava
175
12
0
21 Feb 2018
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
Yiqiu Wang
Anshumali Shrivastava
Jonathan Wang
Junghee Ryu
FedML
122
28
0
04 Sep 2017
Arrays of (locality-sensitive) Count Estimators (ACE): High-Speed Anomaly Detection via Cache Lookups
Chen Luo
Anshumali Shrivastava
98
8
0
20 Jun 2017
Scalable and Sustainable Deep Learning via Randomized Hashing
Ryan Spring
Anshumali Shrivastava
250
135
0
26 Feb 2016
1