ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.05160
  4. Cited By
A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators
  for Partition Function Computation in Log-Linear Models

A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models

15 March 2017
Ryan Spring
Anshumali Shrivastava
ArXiv (abs)PDFHTML

Papers citing "A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models"

27 / 27 papers shown
Title
Improved Stochastic Optimization of LogSumExp
Improved Stochastic Optimization of LogSumExp
E. Gladin
Alexey Kroshnin
Jia Jie Zhu
Pavel Dvurechensky
80
0
0
29 Sep 2025
Real-time Indexing for Large-scale Recommendation by Streaming Vector Quantization Retriever
Real-time Indexing for Large-scale Recommendation by Streaming Vector Quantization Retriever
Xingyan Bin
Jianfei Cui
Wujie Yan
Zhichen Zhao
Xintian Han
Chongyang Yan
Feng Zhang
Xun Zhou
Qi Wu
Zuotao Liu
93
6
0
15 Jan 2025
Hierarchical Structured Neural Network: Efficient Retrieval Scaling for Large Scale Recommendation
Hierarchical Structured Neural Network: Efficient Retrieval Scaling for Large Scale Recommendation
Kaushik Rangadurai
Siyang Yuan
Minhui Huang
Yiqun Liu
Golnaz Ghasemiesfeh
...
Vidhoon Viswanathan
Yan Dong
Liang Wang
Lin Yang
Chonglin Sun
166
0
0
10 Jan 2025
Scalable Cross-Entropy Loss for Sequential Recommendations with Large
  Item Catalogs
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item CatalogsACM Conference on Recommender Systems (RecSys), 2024
Gleb Mezentsev
Danil I. Gusak
Ivan Oseledets
Evgeny Frolov
160
14
0
27 Sep 2024
RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential
  Recommenders
RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential RecommendersInternational Conference on Information and Knowledge Management (CIKM), 2024
Danil I. Gusak
Gleb Mezentsev
Ivan Oseledets
Evgeny Frolov
285
8
0
05 Aug 2024
Memory Mosaics
Memory MosaicsInternational Conference on Learning Representations (ICLR), 2024
Jianyu Zhang
Niklas Nolte
Ranajoy Sadhukhan
Beidi Chen
Léon Bottou
VLM
309
7
0
10 May 2024
LookupFFN: Making Transformers Compute-lite for CPU inference
LookupFFN: Making Transformers Compute-lite for CPU inferenceInternational Conference on Machine Learning (ICML), 2024
Zhanpeng Zeng
Michael Davies
Pranav Pulijala
Karthikeyan Sankaralingam
Vikas Singh
144
10
0
12 Mar 2024
Adaptive and Dynamic Multi-Resolution Hashing for Pairwise Summations
Adaptive and Dynamic Multi-Resolution Hashing for Pairwise Summations
Lianke Qin
Aravind Reddy
Zhao Song
Zhaozhuo Xu
Danyang Zhuo
199
14
0
21 Dec 2022
Training Overparametrized Neural Networks in Sublinear Time
Training Overparametrized Neural Networks in Sublinear Time
Yichuan Deng
Han Hu
Zhao Song
Omri Weinstein
Danyang Zhuo
BDL
235
29
0
09 Aug 2022
Cooperative Retriever and Ranker in Deep Recommenders
Cooperative Retriever and Ranker in Deep RecommendersThe Web Conference (WWW), 2022
Xunpeng Huang
Defu Lian
Jin Chen
Liu Zheng
Xing Xie
Enhong Chen
VLMAI4TS
86
15
0
28 Jun 2022
Distributed SLIDE: Enabling Training Large Neural Networks on Low
  Bandwidth and Simple CPU-Clusters via Model Parallelism and Sparsity
Distributed SLIDE: Enabling Training Large Neural Networks on Low Bandwidth and Simple CPU-Clusters via Model Parallelism and Sparsity
Minghao Yan
Nicholas Meisburger
Tharun Medini
Anshumali Shrivastava
162
6
0
29 Jan 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli
  Sampling
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Zhanpeng Zeng
Yunyang Xiong
Sathya Ravi
Shailesh Acharya
G. Fung
Vikas Singh
158
21
0
18 Nov 2021
Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
  Filtering
Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filtering
Jin Chen
Defu Lian
Binbin Jin
Xunpeng Huang
Kai Zheng
Enhong Chen
BDL
216
28
0
13 Sep 2021
Efficient Inference via Universal LSH Kernel
Efficient Inference via Universal LSH Kernel
Zichang Liu
Benjamin Coleman
Anshumali Shrivastava
60
1
0
21 Jun 2021
Kernel approximation on algebraic varieties
Kernel approximation on algebraic varietiesSIAM Journal on applied algebra and geometry (SIAM J. Appl. Algebra Geom.), 2021
Jason M. Altschuler
P. Parrilo
117
6
0
04 Jun 2021
A Tale of Two Efficient and Informative Negative Sampling Distributions
A Tale of Two Efficient and Informative Negative Sampling DistributionsInternational Conference on Machine Learning (ICML), 2020
Shabnam Daghaghi
Tharun Medini
Nicholas Meisburger
Beidi Chen
Mengnan Zhao
Anshumali Shrivastava
108
10
0
31 Dec 2020
Deep Retrieval: Learning A Retrievable Structure for Large-Scale
  Recommendations
Deep Retrieval: Learning A Retrievable Structure for Large-Scale Recommendations
Weihao Gao
Xiangjun Fan
Chong-Jun Wang
Jiankai Sun
Kai Jia
Wen Xiao
Ruofan Ding
Xingyan Bin
Hui Yang
Xiaobing Liu
CML
194
26
0
12 Jul 2020
Climbing the WOL: Training for Cheaper Inference
Climbing the WOL: Training for Cheaper Inference
Zichang Liu
Zhaozhuo Xu
A. Ji
Jonathan Li
Beidi Chen
Anshumali Shrivastava
TPM
191
7
0
02 Jul 2020
Sub-linear RACE Sketches for Approximate Kernel Density Estimation on
  Streaming Data
Sub-linear RACE Sketches for Approximate Kernel Density Estimation on Streaming Data
Benjamin Coleman
Anshumali Shrivastava
99
37
0
04 Dec 2019
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive
  Stochastic Gradient Estimation
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive Stochastic Gradient Estimation
Beidi Chen
Yingchen Xu
Anshumali Shrivastava
148
16
0
30 Oct 2019
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for
  Large-Scale Deep Learning Systems
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems
Beidi Chen
Tharun Medini
James Farwell
Sameh Gobriel
Charlie Tai
Anshumali Shrivastava
221
111
0
07 Mar 2019
Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data
Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data
Benjamin Coleman
Richard G. Baraniuk
Anshumali Shrivastava
141
7
0
18 Feb 2019
Doubly Sparse: Sparse Mixture of Sparse Experts for Efficient Softmax
  Inference
Doubly Sparse: Sparse Mixture of Sparse Experts for Efficient Softmax Inference
Shun Liao
Ting Chen
Tian Lin
Denny Zhou
Chong-Jun Wang
MoE
77
2
0
30 Jan 2019
Scaling-up Split-Merge MCMC with Locality Sensitive Sampling (LSS)
Scaling-up Split-Merge MCMC with Locality Sensitive Sampling (LSS)
Chen Luo
Anshumali Shrivastava
183
12
0
21 Feb 2018
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High
  Dimensional Similarity Search
FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
Yiqiu Wang
Anshumali Shrivastava
Jonathan Wang
Junghee Ryu
FedML
122
28
0
04 Sep 2017
Arrays of (locality-sensitive) Count Estimators (ACE): High-Speed
  Anomaly Detection via Cache Lookups
Arrays of (locality-sensitive) Count Estimators (ACE): High-Speed Anomaly Detection via Cache Lookups
Chen Luo
Anshumali Shrivastava
98
8
0
20 Jun 2017
Scalable and Sustainable Deep Learning via Randomized Hashing
Scalable and Sustainable Deep Learning via Randomized Hashing
Ryan Spring
Anshumali Shrivastava
250
135
0
26 Feb 2016
1