ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06856
  4. Cited By
Counterfactual Fairness

Counterfactual Fairness

20 March 2017
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
    FaML
ArXivPDFHTML

Papers citing "Counterfactual Fairness"

50 / 823 papers shown
Title
Causal Multi-Level Fairness
Causal Multi-Level Fairness
Vishwali Mhasawade
R. Chunara
30
26
0
14 Oct 2020
Equitable Allocation of Healthcare Resources with Fair Cox Models
Equitable Allocation of Healthcare Resources with Fair Cox Models
Kamrun Naher Keya
Rashidul Islam
Shimei Pan
I. Stockwell
James R. Foulds
14
9
0
14 Oct 2020
On the Fairness of Causal Algorithmic Recourse
On the Fairness of Causal Algorithmic Recourse
Julius von Kügelgen
Amir-Hossein Karimi
Umang Bhatt
Isabel Valera
Adrian Weller
Bernhard Schölkopf
FaML
80
82
0
13 Oct 2020
Bridging Machine Learning and Mechanism Design towards Algorithmic
  Fairness
Bridging Machine Learning and Mechanism Design towards Algorithmic Fairness
Jessie Finocchiaro
R. Maio
F. Monachou
Gourab K. Patro
Manish Raghavan
Ana-Andreea Stoica
Stratis Tsirtsis
FaML
26
56
0
12 Oct 2020
Metrics and methods for a systematic comparison of fairness-aware
  machine learning algorithms
Metrics and methods for a systematic comparison of fairness-aware machine learning algorithms
Gareth Jones
James M. Hickey
Pietro G. Di Stefano
C. Dhanjal
Laura C. Stoddart
V. Vasileiou
FaML
33
21
0
08 Oct 2020
Assessing Classifier Fairness with Collider Bias
Assessing Classifier Fairness with Collider Bias
Zhenlong Xu
Ziqi Xu
Jixue Liu
Debo Cheng
Jiuyong Li
Lin Liu
Adelaide
Canada Ziqi Xu
Zhenlong Xu contributed equally to this paper
CML
FaML
20
4
0
08 Oct 2020
Fairness Perception from a Network-Centric Perspective
Fairness Perception from a Network-Centric Perspective
Farzan Masrour
P. Tan
A. Esfahanian
FaML
19
2
0
07 Oct 2020
How and Why to Use Experimental Data to Evaluate Methods for
  Observational Causal Inference
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
A. Gentzel
Purva Pruthi
David D. Jensen
CML
24
18
0
06 Oct 2020
Can we Generalize and Distribute Private Representation Learning?
Can we Generalize and Distribute Private Representation Learning?
Sheikh Shams Azam
Taejin Kim
Seyyedali Hosseinalipour
Carlee Joe-Wong
S. Bagchi
Christopher G. Brinton
44
10
0
05 Oct 2020
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
37
616
0
04 Oct 2020
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
  Discrimination
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
FaML
37
49
0
25 Sep 2020
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning
Tsu-Jui Fu
Xinze Wang
Scott T. Grafton
Miguel P. Eckstein
William Yang Wang
39
40
0
21 Sep 2020
Group Fairness by Probabilistic Modeling with Latent Fair Decisions
Group Fairness by Probabilistic Modeling with Latent Fair Decisions
YooJung Choi
Meihua Dang
Guy Van den Broeck
FaML
16
30
0
18 Sep 2020
Principles and Practice of Explainable Machine Learning
Principles and Practice of Explainable Machine Learning
Vaishak Belle
I. Papantonis
FaML
24
437
0
18 Sep 2020
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals
Saloni Dash
V. Balasubramanian
Amit Sharma
CML
27
65
0
17 Sep 2020
FairFace Challenge at ECCV 2020: Analyzing Bias in Face Recognition
FairFace Challenge at ECCV 2020: Analyzing Bias in Face Recognition
Tomás Sixta
Julio C. S. Jacques Junior
Pau Buch-Cardona
Neil M. Robertson
E. Vazquez
Sergio Escalera
CVBM
35
34
0
16 Sep 2020
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
27
36
0
14 Sep 2020
Fairness Constraints in Semi-supervised Learning
Fairness Constraints in Semi-supervised Learning
Tao Zhang
Tianqing Zhu
Mengde Han
Jing Li
Wanlei Zhou
Philip S. Yu
FaML
6
7
0
14 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
46
62
0
11 Sep 2020
A Framework for Fairer Machine Learning in Organizations
A Framework for Fairer Machine Learning in Organizations
Lily Morse
M. Teodorescu
Yazeed Awwad
Gerald C. Kane
FaML
FedML
27
5
0
10 Sep 2020
On the Identification of Fair Auditors to Evaluate Recommender Systems
  based on a Novel Non-Comparative Fairness Notion
On the Identification of Fair Auditors to Evaluate Recommender Systems based on a Novel Non-Comparative Fairness Notion
Mukund Telukunta
Venkata Sriram Siddhardh Nadendla
FaML
16
0
0
09 Sep 2020
Adversarial Learning for Counterfactual Fairness
Adversarial Learning for Counterfactual Fairness
Vincent Grari
Sylvain Lamprier
Marcin Detyniecki
FaML
25
22
0
30 Aug 2020
How to "Improve" Prediction Using Behavior Modification
How to "Improve" Prediction Using Behavior Modification
Galit Shmueli
A. Tafti
OffRL
AI4TS
11
8
0
26 Aug 2020
Improving Fair Predictions Using Variational Inference In Causal Models
Improving Fair Predictions Using Variational Inference In Causal Models
Rik Helwegen
Christos Louizos
Patrick Forré
FaML
21
6
0
25 Aug 2020
The Fairness-Accuracy Pareto Front
The Fairness-Accuracy Pareto Front
Susan Wei
Marc Niethammer
FaML
51
33
0
25 Aug 2020
Beyond Individual and Group Fairness
Beyond Individual and Group Fairness
Pranjal Awasthi
Corinna Cortes
Yishay Mansour
M. Mohri
FaML
23
22
0
21 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of
  Artificial Intelligence
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
38
125
0
05 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive
  Model Interpretation via Causal Attribution
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
20
9
0
01 Aug 2020
Visual Analysis of Discrimination in Machine Learning
Visual Analysis of Discrimination in Machine Learning
Qianwen Wang
Zhen Xu
Zhutian Chen
Yong Wang
Shixia Liu
Huamin Qu
FaML
12
38
0
30 Jul 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk
  Prediction
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
Technologies for Trustworthy Machine Learning: A Survey in a
  Socio-Technical Context
Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context
Ehsan Toreini
Mhairi Aitken
Kovila P. L. Coopamootoo
Karen Elliott
Vladimiro González-Zelaya
P. Missier
Magdalene Ng
Aad van Moorsel
39
17
0
17 Jul 2020
Explainable Deep Learning for Uncovering Actionable Scientific Insights
  for Materials Discovery and Design
Explainable Deep Learning for Uncovering Actionable Scientific Insights for Materials Discovery and Design
Shusen Liu
B. Kailkhura
Jize Zhang
A. Hiszpanski
Emily Robertson
Donald Loveland
T. Y. Han
20
2
0
16 Jul 2020
Ensuring Fairness Beyond the Training Data
Ensuring Fairness Beyond the Training Data
Debmalya Mandal
Samuel Deng
Suman Jana
Jeannette M. Wing
Daniel J. Hsu
FaML
OOD
27
58
0
12 Jul 2020
The Impossibility Theorem of Machine Fairness -- A Causal Perspective
The Impossibility Theorem of Machine Fairness -- A Causal Perspective
Kailash Karthik
FaML
20
24
0
12 Jul 2020
Algorithmic Fairness in Education
Algorithmic Fairness in Education
René F. Kizilcec
Hansol Lee
FaML
38
120
0
10 Jul 2020
Machine learning fairness notions: Bridging the gap with real-world
  applications
Machine learning fairness notions: Bridging the gap with real-world applications
K. Makhlouf
Sami Zhioua
C. Palamidessi
FaML
11
53
0
30 Jun 2020
Actionable Attribution Maps for Scientific Machine Learning
Actionable Attribution Maps for Scientific Machine Learning
Shusen Liu
B. Kailkhura
Jize Zhang
A. Hiszpanski
Emily Robertson
Donald Loveland
T. Y. Han
14
1
0
30 Jun 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
35
73
0
24 Jun 2020
Verifying Individual Fairness in Machine Learning Models
Verifying Individual Fairness in Machine Learning Models
Philips George John
Deepak Vijaykeerthy
Diptikalyan Saha
FaML
27
57
0
21 Jun 2020
Achieving Fairness via Post-Processing in Web-Scale Recommender Systems
Achieving Fairness via Post-Processing in Web-Scale Recommender Systems
Preetam Nandy
Cyrus DiCiccio
Divya Venugopalan
Heloise Logan
Kinjal Basu
N. Karoui
FaML
21
30
0
19 Jun 2020
Algorithmic Decision Making with Conditional Fairness
Algorithmic Decision Making with Conditional Fairness
Renzhe Xu
Peng Cui
Kun Kuang
Bo Li
Linjun Zhou
Zheyan Shen
Wei Cui
FaML
23
36
0
18 Jun 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
16
57
0
18 Jun 2020
Causal intersectionality for fair ranking
Causal intersectionality for fair ranking
Ke Yang
Joshua R. Loftus
Julia Stoyanovich
35
40
0
15 Jun 2020
On Adversarial Bias and the Robustness of Fair Machine Learning
On Adversarial Bias and the Robustness of Fair Machine Learning
Hong Chang
Ta Duy Nguyen
S. K. Murakonda
Ehsan Kazemi
Reza Shokri
FaML
OOD
FedML
16
50
0
15 Jun 2020
Intra-Processing Methods for Debiasing Neural Networks
Intra-Processing Methods for Debiasing Neural Networks
Yash Savani
Colin White
G. NaveenSundar
16
43
0
15 Jun 2020
Causal Inference with Deep Causal Graphs
Causal Inference with Deep Causal Graphs
Álvaro Parafita
Jordi Vitrià
CML
14
10
0
15 Jun 2020
Fairness Under Feature Exemptions: Counterfactual and Observational
  Measures
Fairness Under Feature Exemptions: Counterfactual and Observational Measures
Sanghamitra Dutta
Praveen Venkatesh
Piotr (Peter) Mardziel
Anupam Datta
P. Grover
14
16
0
14 Jun 2020
Fairness in Forecasting and Learning Linear Dynamical Systems
Fairness in Forecasting and Learning Linear Dynamical Systems
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
37
7
0
12 Jun 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
32
101
0
12 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
50
112
0
11 Jun 2020
Previous
123...121314151617
Next