Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.10622
Cited By
Diving into the shallows: a computational perspective on large-scale shallow learning
30 March 2017
Siyuan Ma
M. Belkin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Diving into the shallows: a computational perspective on large-scale shallow learning"
15 / 15 papers shown
Title
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
44
2
0
18 Jul 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
48
2
0
09 May 2024
Changing the Kernel During Training Leads to Double Descent in Kernel Regression
Oskar Allerbo
38
0
0
03 Nov 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
21
0
0
26 Jan 2023
RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
Mateus P. Otto
Rafael Izbicki
37
1
0
11 Nov 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
26
37
0
14 Jul 2022
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks
P. Esser
L. C. Vankadara
D. Ghoshdastidar
28
53
0
07 Dec 2021
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
30
25
0
31 Jul 2021
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
22
109
0
10 Aug 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
30
113
0
18 Jun 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
214
0
03 Dec 2019
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
57
1,395
0
22 Jun 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
25
85
0
24 Mar 2018
Approximation beats concentration? An approximation view on inference with smooth radial kernels
M. Belkin
34
69
0
10 Jan 2018
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
20
1,013
0
23 May 2017
1