Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.00109
Cited By
Snapshot Ensembles: Train 1, get M for free
1 April 2017
Gao Huang
Yixuan Li
Geoff Pleiss
Zhuang Liu
J. Hopcroft
Kilian Q. Weinberger
OOD
FedML
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Snapshot Ensembles: Train 1, get M for free"
50 / 441 papers shown
Title
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
38
5
0
04 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
44
5
0
04 Mar 2024
Training Neural Networks from Scratch with Parallel Low-Rank Adapters
Minyoung Huh
Brian Cheung
Jeremy Bernstein
Phillip Isola
Pulkit Agrawal
35
10
0
26 Feb 2024
Forecasting Events in Soccer Matches Through Language
Tiago Mendes-Neves
Luís Meireles
João Mendes-Moreira
13
3
0
09 Feb 2024
Towards a Systematic Approach to Design New Ensemble Learning Algorithms
João Mendes-Moreira
Tiago Mendes-Neves
FedML
22
1
0
09 Feb 2024
A Bandit Approach with Evolutionary Operators for Model Selection
Margaux Brégere Lpsm
Julie Keisler
17
1
0
07 Feb 2024
How Good is a Single Basin?
Kai Lion
Lorenzo Noci
Thomas Hofmann
Gregor Bachmann
UQCV
21
2
0
05 Feb 2024
eXplainable Bayesian Multi-Perspective Generative Retrieval
EuiYul Song
Philhoon Oh
Sangryul Kim
James Thorne
BDL
30
0
0
04 Feb 2024
ARGS: Alignment as Reward-Guided Search
Maxim Khanov
Jirayu Burapacheep
Yixuan Li
33
44
0
23 Jan 2024
Stochastic Subnetwork Annealing: A Regularization Technique for Fine Tuning Pruned Subnetworks
Tim Whitaker
Darrell Whitley
25
0
0
16 Jan 2024
DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid Neural Modeling
Deepak Akhare
Tengfei Luo
Jian-Xun Wang
27
6
0
30 Dec 2023
FedSDD: Scalable and Diversity-enhanced Distillation for Model Aggregation in Federated Learning
Ho Man Kwan
Shenghui Song
FedML
17
2
0
28 Dec 2023
TinyGSM: achieving >80% on GSM8k with small language models
Bingbin Liu
Sébastien Bubeck
Ronen Eldan
Janardhan Kulkarni
Yuanzhi Li
Anh Nguyen
Rachel A. Ward
Yi Zhang
ALM
19
47
0
14 Dec 2023
Mini-batch Gradient Descent with Buffer
Haobo Qi
Du Huang
Yingqiu Zhu
Danyang Huang
Hansheng Wang
16
1
0
14 Dec 2023
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
Zhen Qin
Daoyuan Chen
Bingchen Qian
Bolin Ding
Yaliang Li
Shuiguang Deng
FedML
32
32
0
11 Dec 2023
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness
Anh-Quan Cao
Angela Dai
Raoul de Charette
UQCV
13
19
0
04 Dec 2023
ADM-Loc: Actionness Distribution Modeling for Point-supervised Temporal Action Localization
Elahe Vahdani
Yingli Tian
21
0
0
27 Nov 2023
MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable Uncertainty
Rémi Marsal
F. Chabot
Angélique Loesch
William Grolleau
H. Sahbi
MDE
UQCV
33
6
0
10 Nov 2023
A comprehensive survey on deep active learning in medical image analysis
Haoran Wang
Q. Jin
Shiman Li
Siyu Liu
Manning Wang
Zhijian Song
VLM
44
22
0
22 Oct 2023
Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective
Ming Zhong
Chenxin An
Weizhu Chen
Jiawei Han
Pengcheng He
21
9
0
17 Oct 2023
Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free Ensembles of DNNs
Uri Stern
D. Weinshall
CLL
16
0
0
17 Oct 2023
Why Do We Need Weight Decay in Modern Deep Learning?
Maksym Andriushchenko
Francesco DÁngelo
Aditya Varre
Nicolas Flammarion
24
27
0
06 Oct 2023
RRR-Net: Reusing, Reducing, and Recycling a Deep Backbone Network
Haozhe Sun
Isabelle M Guyon
F. Mohr
Hedi Tabia
CVBM
27
2
0
02 Oct 2023
A Theoretical Analysis of Noise Geometry in Stochastic Gradient Descent
Mingze Wang
Lei Wu
22
3
0
01 Oct 2023
LoRA ensembles for large language model fine-tuning
Xi Wang
Laurence Aitchison
Maja Rudolph
UQCV
23
33
0
29 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Deep Model Fusion: A Survey
Weishi Li
Yong Peng
Miao Zhang
Liang Ding
Han Hu
Li Shen
FedML
MoMe
28
51
0
27 Sep 2023
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
55
7
0
25 Sep 2023
Improve Deep Forest with Learnable Layerwise Augmentation Policy Schedule
Hongyu Zhu
Sichu Liang
Wentao Hu
Fangqi Li
Yali Yuan
Shi-Lin Wang
Guang Cheng
13
2
0
16 Sep 2023
Unveiling Invariances via Neural Network Pruning
Derek Xu
Yizhou Sun
Wei Wang
36
0
0
15 Sep 2023
Exploring Flat Minima for Domain Generalization with Large Learning Rates
Jian Zhang
Lei Qi
Yinghuan Shi
Yang Gao
31
2
0
12 Sep 2023
POCO: 3D Pose and Shape Estimation with Confidence
Sai Kumar Dwivedi
Cordelia Schmid
Hongwei Yi
Michael J. Black
Dimitrios Tzionas
3DH
11
16
0
24 Aug 2023
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
16
1
0
11 Aug 2023
Out-of-Distribution Detection for Monocular Depth Estimation
Julia Hornauer
Adrian Holzbock
Vasileios Belagiannis
UQCV
27
4
0
11 Aug 2023
Learning to Generate Training Datasets for Robust Semantic Segmentation
Marwane Hariat
Olivier Laurent
Rémi Kazmierczak
Shihao Zhang
Andrei Bursuc
Angela Yao
Gianni Franchi
UQCV
21
2
0
01 Aug 2023
A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond
Junyu Chen
Yihao Liu
Shuwen Wei
Zhangxing Bian
Shalini Subramanian
A. Carass
Jerry L. Prince
Yong Du
OOD
39
36
0
28 Jul 2023
How to Scale Your EMA
Dan Busbridge
Jason Ramapuram
Pierre Ablin
Tatiana Likhomanenko
Eeshan Gunesh Dhekane
Xavier Suau
Russ Webb
25
17
0
25 Jul 2023
Snapshot Spectral Clustering -- a costless approach to deep clustering ensembles generation
Adam Piróg
Halina Kwasnicka
27
1
0
17 Jul 2023
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
35
14
0
06 Jul 2023
Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers
Yineng Chen
Z. Li
Lefei Zhang
Bo Du
Hai Zhao
25
4
0
02 Jul 2023
Improving Online Continual Learning Performance and Stability with Temporal Ensembles
Albin Soutif--Cormerais
Antonio Carta
Joost van de Weijer
CLL
8
10
0
29 Jun 2023
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Max Zimmer
Christoph Spiegel
S. Pokutta
MoMe
41
14
0
29 Jun 2023
Traversing Between Modes in Function Space for Fast Ensembling
Eunggu Yun
Hyungi Lee
G. Nam
Juho Lee
UQCV
24
2
0
20 Jun 2023
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
N. Lell
A. Scherp
33
1
0
15 Jun 2023
Integrating Uncertainty Awareness into Conformalized Quantile Regression
Raphael Rossellini
Rina Foygel Barber
Rebecca Willett
25
7
0
14 Jun 2023
Lookaround Optimizer:
k
k
k
steps around, 1 step average
Jiangtao Zhang
Shunyu Liu
Jie Song
Tongtian Zhu
Zhenxing Xu
Mingli Song
MoMe
29
6
0
13 Jun 2023
Population-Based Evolutionary Gaming for Unsupervised Person Re-identification
Yunpeng Zhai
Peixi Peng
Mengxi Jia
Shiyong Li
Weiqiang Chen
Xuesong Gao
Yonghong Tian
17
14
0
08 Jun 2023
Optimal Transport Model Distributional Robustness
Van-Anh Nguyen
Trung Le
Anh Tuan Bui
Thanh-Toan Do
Dinh Q. Phung
OOD
30
3
0
07 Jun 2023
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
37
3
0
02 Jun 2023
infoVerse: A Universal Framework for Dataset Characterization with Multidimensional Meta-information
Jaehyung Kim
Yekyung Kim
Karin de Langis
Jinwoo Shin
Dongyeop Kang
17
1
0
30 May 2023
Previous
1
2
3
4
5
6
7
8
9
Next