ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.03488
  4. Cited By
Learning Proximal Operators: Using Denoising Networks for Regularizing
  Inverse Imaging Problems

Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems

11 April 2017
Tim Meinhardt
Michael Möller
C. Hazirbas
Daniel Cremers
ArXivPDFHTML

Papers citing "Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems"

49 / 49 papers shown
Title
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
Ségolène Martin
Anne Gagneux
Paul Hagemann
Gabriele Steidl
42
9
0
03 Oct 2024
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play
  Priors
Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors
Zihui Wu
Yu Sun
Yifan Chen
Bingliang Zhang
Yisong Yue
Katherine L. Bouman
DiffM
27
20
0
29 May 2024
From Learning to Optimize to Learning Optimization Algorithms
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
62
1
0
28 May 2024
Deep Regularized Compound Gaussian Network for Solving Linear Inverse
  Problems
Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
Carter Lyons
R. Raj
Margaret Cheney
BDL
21
3
0
28 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
S. Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
20
11
0
22 May 2023
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring
  Spatially Varying Kernels
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels
Charles Laroche
Andrés Almansa
Eva Coupeté
Matias Tassano
25
2
0
19 Oct 2022
Video Restoration with a Deep Plug-and-Play Prior
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
25
1
0
06 Sep 2022
Estimating a potential without the agony of the partition function
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
25
2
0
19 Aug 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched
  Priors
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
S. Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
26
6
0
26 Jul 2022
A hybrid approach to seismic deblending: when physics meets
  self-supervision
A hybrid approach to seismic deblending: when physics meets self-supervision
N. Luiken
M. Ravasi
C. Birnie
16
6
0
30 May 2022
Deep Generalized Unfolding Networks for Image Restoration
Deep Generalized Unfolding Networks for Image Restoration
Chong Mou
Qian Wang
Jian Zhang
26
182
0
28 Apr 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
21
15
0
13 Apr 2022
Alternative design of DeepPDNet in the context of image restoration
Alternative design of DeepPDNet in the context of image restoration
Mingyuan Jiu
N. Pustelnik
25
2
0
20 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
25
15
0
20 Jan 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and
  stochastic gradient descent
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
19
25
0
16 Jan 2022
Gradient Step Denoiser for convergent Plug-and-Play
Gradient Step Denoiser for convergent Plug-and-Play
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
24
93
0
07 Oct 2021
High-dimensional Assisted Generative Model for Color Image Restoration
High-dimensional Assisted Generative Model for Color Image Restoration
Kai Hong
Chunhua Wu
Cailian Yang
Minghui Zhang
Yancheng Lu
Yuhao Wang
Qiegen Liu
DiffM
18
1
0
14 Aug 2021
Robust partial Fourier reconstruction for diffusion-weighted imaging
  using a recurrent convolutional neural network
Robust partial Fourier reconstruction for diffusion-weighted imaging using a recurrent convolutional neural network
Fasil Gadjimuradov
Thomas Benkert
M. Nickel
Andreas K. Maier
OOD
15
11
0
19 May 2021
Fixed-Point and Objective Convergence of Plug-and-Play Algorithms
Fixed-Point and Objective Convergence of Plug-and-Play Algorithms
Pravin Nair
Ruturaj G. Gavaskar
K. Chaudhury
43
37
0
21 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
38
225
0
23 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
24
109
0
08 Mar 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
38
180
0
16 Feb 2021
Denoising Score-Matching for Uncertainty Quantification in Inverse
  Problems
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems
Zaccharie Ramzi
B. Remy
F. Lanusse
Jean-Luc Starck
P. Ciuciu
UQCV
MedIm
28
14
0
16 Nov 2020
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic
  Method using Deep Denoising Priors
Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun
Jiaming Liu
Yiran Sun
B. Wohlberg
Ulugbek S. Kamilov
22
15
0
03 Oct 2020
TorchRadon: Fast Differentiable Routines for Computed Tomography
TorchRadon: Fast Differentiable Routines for Computed Tomography
Matteo Ronchetti
OOD
MedIm
23
63
0
29 Sep 2020
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Solving Linear Inverse Problems Using the Prior Implicit in a Denoiser
Zahra Kadkhodaie
Eero P. Simoncelli
19
81
0
27 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
118
183
0
22 Jul 2020
Total Deep Variation: A Stable Regularizer for Inverse Problems
Total Deep Variation: A Stable Regularizer for Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
T. Pock
MedIm
12
19
0
15 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
11
518
0
12 May 2020
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging
  Problems
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Carola-Bibiane Schönlieb
Hua Huang
18
103
0
22 Feb 2020
Deep Learning on Image Denoising: An overview
Deep Learning on Image Denoising: An overview
Chunwei Tian
Lunke Fei
Wenxian Zheng
Yong-mei Xu
W. Zuo
Chia-Wen Lin
33
813
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
26
996
0
22 Dec 2019
Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration
Chen Zhang
Bangti Jin
UQCV
22
12
0
01 Aug 2019
Image-Adaptive GAN based Reconstruction
Image-Adaptive GAN based Reconstruction
Shady Abu Hussein
Tom Tirer
Raja Giryes
GAN
6
89
0
12 Jun 2019
Block Coordinate Regularization by Denoising
Block Coordinate Regularization by Denoising
Yu Sun
Jiaming Liu
Ulugbek S. Kamilov
30
82
0
13 May 2019
Deep Plug-and-play Prior for Low-rank Tensor Completion
Deep Plug-and-play Prior for Low-rank Tensor Completion
Xile Zhao
Wen-Hao Xu
Tai-Xiang Jiang
Yao Wang
Michael K. Ng
21
91
0
11 May 2019
Controlling Neural Networks via Energy Dissipation
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Daniel Cremers
25
17
0
05 Apr 2019
Proximal Splitting Networks for Image Restoration
Proximal Splitting Networks for Image Restoration
Raied Aljadaany
Dipan K. Pal
Marios Savvides
SupR
9
8
0
17 Mar 2019
Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm
Zhaoyang Lv
F. Dellaert
James M. Rehg
Andreas Geiger
3DV
6
48
0
17 Dec 2018
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Carla Bertocchi
Émilie Chouzenoux
M. Corbineau
J. Pesquet
M. Prato
19
107
0
11 Dec 2018
Regularization by architecture: A deep prior approach for inverse
  problems
Regularization by architecture: A deep prior approach for inverse problems
Sören Dittmer
T. Kluth
Peter Maass
Daniel Otero Baguer
19
97
0
10 Dec 2018
Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for
  Limited Angle Computed Tomography
Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for Limited Angle Computed Tomography
T. Bubba
Gitta Kutyniok
Matti Lassas
M. März
Wojciech Samek
S. Siltanen
Vignesh Srinivasan
18
136
0
12 Nov 2018
Regularized Fourier Ptychography using an Online Plug-and-Play Algorithm
Regularized Fourier Ptychography using an Online Plug-and-Play Algorithm
Yu Sun
Shiqi Xu
Yunzhe Li
L. Tian
B. Wohlberg
Ulugbek S. Kamilov
22
44
0
31 Oct 2018
Adaptive Quantile Sparse Image (AQuaSI) Prior for Inverse Imaging
  Problems
Adaptive Quantile Sparse Image (AQuaSI) Prior for Inverse Imaging Problems
Franziska Schirrmacher
Thomas Köhler
Christian Riess
14
5
0
06 Apr 2018
Local Kernels that Approximate Bayesian Regularization and Proximal
  Operators
Local Kernels that Approximate Bayesian Regularization and Proximal Operators
Frank Ong
P. Milanfar
Pascal Getreuer
17
12
0
09 Mar 2018
Learning a Single Convolutional Super-Resolution Network for Multiple
  Degradations
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
K. Zhang
W. Zuo
Lei Zhang
SupR
44
902
0
17 Dec 2017
Learned Primal-dual Reconstruction
Learned Primal-dual Reconstruction
J. Adler
Ozan Oktem
MedIm
19
747
0
20 Jul 2017
1