Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.08847
Cited By
Parseval Networks: Improving Robustness to Adversarial Examples
28 April 2017
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Parseval Networks: Improving Robustness to Adversarial Examples"
37 / 487 papers shown
Title
Predicting Adversarial Examples with High Confidence
A. Galloway
Graham W. Taylor
M. Moussa
AAML
18
9
0
13 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
33
296
0
12 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
27
924
0
09 Feb 2018
Fibres of Failure: Classifying errors in predictive processes
L. Carlsson
Gunnar Carlsson
Mikael Vejdemo-Johansson
AI4CE
24
4
0
09 Feb 2018
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Carl-Johann Simon-Gabriel
Yann Ollivier
Léon Bottou
Bernhard Schölkopf
David Lopez-Paz
AAML
22
48
0
05 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
16
965
0
29 Jan 2018
Fooling End-to-end Speaker Verification by Adversarial Examples
Felix Kreuk
Yossi Adi
Moustapha Cissé
Joseph Keshet
AAML
11
202
0
10 Jan 2018
Adversarial Spheres
Justin Gilmer
Luke Metz
Fartash Faghri
S. Schoenholz
M. Raghu
Martin Wattenberg
Ian Goodfellow
AAML
17
7
0
09 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Saeed Mian
AAML
22
1,854
0
02 Jan 2018
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
23
174
0
26 Dec 2017
Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems
Kexin Pei
Linjie Zhu
Yinzhi Cao
Junfeng Yang
Carl Vondrick
Suman Jana
AAML
19
102
0
05 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
19
14
0
03 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
22
249
0
30 Nov 2017
ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases
Pierre Stock
Moustapha Cissé
FaML
23
46
0
30 Nov 2017
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
Anurag Arnab
O. Mikšík
Philip H. S. Torr
AAML
23
304
0
27 Nov 2017
Intriguing Properties of Adversarial Examples
E. D. Cubuk
Barret Zoph
S. Schoenholz
Quoc V. Le
AAML
23
84
0
08 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
34
1,487
0
02 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
L. V. D. van der Maaten
AAML
28
1,386
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
26
785
0
30 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Y. Zou
FAtt
AAML
22
856
0
29 Oct 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
22
9,583
0
25 Oct 2017
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
169
1,635
0
11 Oct 2017
Orthogonal Weight Normalization: Solution to Optimization over Multiple Dependent Stiefel Manifolds in Deep Neural Networks
Lei Huang
Xianglong Liu
B. Lang
Adams Wei Yu
Yongliang Wang
Bo Li
ODL
19
223
0
16 Sep 2017
Art of singular vectors and universal adversarial perturbations
Valentin Khrulkov
Ivan V. Oseledets
AAML
17
132
0
11 Sep 2017
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
Yuchi Tian
Kexin Pei
Suman Jana
Baishakhi Ray
AAML
9
1,347
0
28 Aug 2017
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
22
268
0
17 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
13
1,199
0
26 Jun 2017
Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations
A. Bietti
Julien Mairal
14
7
0
09 Jun 2017
Kronecker Recurrent Units
C. Jose
Moustapha Cissé
F. Fleuret
ODL
24
45
0
29 May 2017
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
Chang Song
Hsin-Pai Cheng
Huanrui Yang
Sicheng Li
Chunpeng Wu
Qing Wu
H. Li
Yiran Chen
AAML
13
2
0
27 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
29
505
0
23 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick D. McDaniel
AAML
10
2,697
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
17
1,350
0
18 May 2017
Optimization on Product Submanifolds of Convolution Kernels
Mete Ozay
Takayuki Okatani
AAML
18
0
0
22 Jan 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction
Thomas Wiatowski
Helmut Bölcskei
FAtt
18
361
0
19 Dec 2015
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
Uri Shaham
Yutaro Yamada
S. Negahban
AAML
14
73
0
17 Nov 2015
Previous
1
2
3
...
10
8
9