ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09280
  4. Cited By
Implicit Regularization in Matrix Factorization

Implicit Regularization in Matrix Factorization

25 May 2017
Suriya Gunasekar
Blake E. Woodworth
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
ArXivPDFHTML

Papers citing "Implicit Regularization in Matrix Factorization"

33 / 133 papers shown
Title
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
32
94
0
15 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Hadamard Wirtinger Flow for Sparse Phase Retrieval
Hadamard Wirtinger Flow for Sparse Phase Retrieval
Fan Wu
Patrick Rebeschini
13
18
0
01 Jun 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
Orthogonal Over-Parameterized Training
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
Dropout: Explicit Forms and Capacity Control
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
64
37
0
06 Mar 2020
Exact expressions for double descent and implicit regularization via
  surrogate random design
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix
  Recovery
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery
Jicong Fan
Lijun Ding
Yudong Chen
Madeleine Udell
20
70
0
13 Nov 2019
Neural Similarity Learning
Neural Similarity Learning
Weiyang Liu
Zhen Liu
James M. Rehg
Le Song
27
29
0
28 Oct 2019
The Implicit Regularization of Ordinary Least Squares Ensembles
The Implicit Regularization of Ordinary Least Squares Ensembles
Daniel LeJeune
Hamid Javadi
Richard G. Baraniuk
18
43
0
10 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification
  via an All-Layer Margin
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
38
85
0
09 Oct 2019
Bregman Proximal Framework for Deep Linear Neural Networks
Bregman Proximal Framework for Deep Linear Neural Networks
Mahesh Chandra Mukkamala
Felix Westerkamp
Emanuel Laude
Daniel Cremers
Peter Ochs
21
7
0
08 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
Jason D. Lee
24
116
0
03 Oct 2019
Overparameterized Neural Networks Implement Associative Memory
Overparameterized Neural Networks Implement Associative Memory
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
35
71
0
26 Sep 2019
The Implicit Bias of Depth: How Incremental Learning Drives
  Generalization
The Implicit Bias of Depth: How Incremental Learning Drives Generalization
Daniel Gissin
Shai Shalev-Shwartz
Amit Daniely
AI4CE
14
78
0
26 Sep 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
The Implicit Bias of AdaGrad on Separable Data
The Implicit Bias of AdaGrad on Separable Data
Qian Qian
Xiaoyuan Qian
37
23
0
09 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
38
493
0
31 May 2019
Generalization bounds for deep convolutional neural networks
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
90
0
29 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
28
236
0
28 May 2019
Lexicographic and Depth-Sensitive Margins in Homogeneous and
  Non-Homogeneous Deep Models
Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models
Mor Shpigel Nacson
Suriya Gunasekar
Jason D. Lee
Nathan Srebro
Daniel Soudry
33
92
0
17 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
One-Pass Incomplete Multi-view Clustering
One-Pass Incomplete Multi-view Clustering
Menglei Hu
Songcan Chen
6
129
0
02 Mar 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
60
1,614
0
28 Dec 2018
Implicit Regularization of Stochastic Gradient Descent in Natural
  Language Processing: Observations and Implications
Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing: Observations and Implications
Deren Lei
Zichen Sun
Yijun Xiao
William Yang Wang
35
14
0
01 Nov 2018
Regularization Matters: Generalization and Optimization of Neural Nets
  v.s. their Induced Kernel
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
28
245
0
12 Oct 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU
  Models?
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
31
19
0
12 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit
  Regularization
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
24
61
0
04 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized
  Models using Optimal Transport
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
65
726
0
24 May 2018
Characterizing Implicit Bias in Terms of Optimization Geometry
Characterizing Implicit Bias in Terms of Optimization Geometry
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
AI4CE
46
399
0
22 Feb 2018
Fix your classifier: the marginal value of training the last weight
  layer
Fix your classifier: the marginal value of training the last weight layer
Elad Hoffer
Itay Hubara
Daniel Soudry
35
101
0
14 Jan 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
310
2,896
0
15 Sep 2016
Previous
123