ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09558
  4. Cited By
Bayesian GAN
v1v2v3 (latest)

Bayesian GAN

26 May 2017
Yunus Saatci
A. Wilson
    GAN
ArXiv (abs)PDFHTML

Papers citing "Bayesian GAN"

50 / 65 papers shown
Title
Joint-stochastic-approximation Autoencoders with Application to Semi-supervised Learning
Joint-stochastic-approximation Autoencoders with Application to Semi-supervised Learning
Wenbo He
Zhijian Ou
DRLBDL
17
0
0
24 May 2025
Generative Uncertainty in Diffusion Models
Generative Uncertainty in Diffusion Models
Metod Jazbec
Eliot Wong-Toi
Guoxuan Xia
Dan Zhang
Eric T. Nalisnick
Stephan Mandt
DiffM
124
1
0
28 Feb 2025
Diffusion Model Guided Sampling with Pixel-Wise Aleatoric Uncertainty Estimation
Michele De Vita
Vasileios Belagiannis
DiffM
151
1
0
29 Nov 2024
Capturing Climatic Variability: Using Deep Learning for Stochastic
  Downscaling
Capturing Climatic Variability: Using Deep Learning for Stochastic Downscaling
Kiri Daust
Adam Monahan
126
3
0
31 May 2024
A Chronological Survey of Theoretical Advancements in Generative
  Adversarial Networks for Computer Vision
A Chronological Survey of Theoretical Advancements in Generative Adversarial Networks for Computer Vision
Hrishikesh Sharma
AI4CEEGVM
43
1
0
02 Nov 2023
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian
  Inference
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDLDiffM
71
7
0
17 Oct 2023
Human-AI Interactions and Societal Pitfalls
Human-AI Interactions and Societal Pitfalls
Francisco Castro
Jian Gao
Sébastien Martin
81
3
0
19 Sep 2023
Robust GAN inversion
Robust GAN inversion
Egor Sevriugov
Ivan Oseledets
53
0
0
31 Aug 2023
Adversarial Bayesian Augmentation for Single-Source Domain
  Generalization
Adversarial Bayesian Augmentation for Single-Source Domain Generalization
Sheng Cheng
Tejas Gokhale
Yezhou Yang
OOD
60
16
0
18 Jul 2023
Post-train Black-box Defense via Bayesian Boundary Correction
Post-train Black-box Defense via Bayesian Boundary Correction
He Wang
Yunfeng Diao
AAML
85
1
0
29 Jun 2023
Unsupervised Joint Image Transfer and Uncertainty Quantification Using
  Patch Invariant Networks
Unsupervised Joint Image Transfer and Uncertainty Quantification Using Patch Invariant Networks
Christoph Angermann
Markus Haltmeier
Ahsan Raza Siyal
59
3
0
09 Jul 2022
Particle algorithms for maximum likelihood training of latent variable
  models
Particle algorithms for maximum likelihood training of latent variable models
Juan Kuntz
Jen Ning Lim
A. M. Johansen
FedML
109
23
0
27 Apr 2022
From MIM-Based GAN to Anomaly Detection:Event Probability Influence on
  Generative Adversarial Networks
From MIM-Based GAN to Anomaly Detection:Event Probability Influence on Generative Adversarial Networks
R. She
Pingyi Fan
GAN
23
5
0
25 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
Defending Black-box Skeleton-based Human Activity Classifiers
He Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
131
10
0
09 Mar 2022
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial
  and Survey
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
100
12
0
26 Nov 2021
Unsupervised Image Generation with Infinite Generative Adversarial
  Networks
Unsupervised Image Generation with Infinite Generative Adversarial Networks
Hui Ying
He Wang
Tianjia Shao
Yin Yang
Kun Zhou
GAN
46
2
0
18 Aug 2021
Prb-GAN: A Probabilistic Framework for GAN Modelling
Prb-GAN: A Probabilistic Framework for GAN Modelling
Blessen George
V. Kurmi
Vinay P. Namboodiri
GAN
50
0
0
12 Jul 2021
Exploring Dropout Discriminator for Domain Adaptation
Exploring Dropout Discriminator for Domain Adaptation
V. Kurmi
Venkatesh Subramanian
Vinay P. Namboodiri
OOD
51
6
0
09 Jul 2021
Sensor-invariant Fingerprint ROI Segmentation Using Recurrent
  Adversarial Learning
Sensor-invariant Fingerprint ROI Segmentation Using Recurrent Adversarial Learning
Indu Joshi
Ayush Utkarsh
R. Kothari
V. Kurmi
A. Dantcheva
Sumantra Dutta Roy
P. Kalra
OOD
125
10
0
03 Jul 2021
MIND: Inductive Mutual Information Estimation, A Convex Maximum-Entropy
  Copula Approach
MIND: Inductive Mutual Information Estimation, A Convex Maximum-Entropy Copula Approach
Yves-Laurent Kom Samo
40
8
0
25 Feb 2021
Complexity Controlled Generative Adversarial Networks
Complexity Controlled Generative Adversarial Networks
Himanshu Pant
Jayadeva Jayadeva
Sumit Soman
GAN
43
1
0
20 Nov 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
76
28
0
19 Oct 2020
Remote sensing image fusion based on Bayesian GAN
Remote sensing image fusion based on Bayesian GAN
Junfu Chen
Yue Pan
Yang Chen
GAN
22
4
0
20 Sep 2020
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
65
47
0
12 Aug 2020
Generative Adversarial Networks (GANs Survey): Challenges, Solutions,
  and Future Directions
Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions
Divya Saxena
Jiannong Cao
AAMLAI4CE
156
305
0
30 Apr 2020
Stabilizing Training of Generative Adversarial Nets via Langevin Stein
  Variational Gradient Descent
Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent
Dong Wang
Xiaoqian Qin
F. Song
Li Cheng
GAN
97
22
0
22 Apr 2020
The Case for Bayesian Deep Learning
The Case for Bayesian Deep Learning
A. Wilson
UQCVBDLOOD
132
114
0
29 Jan 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
106
843
0
20 Jan 2020
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
103
63
0
11 Dec 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
126
44
0
23 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
66
93
0
14 Oct 2019
Stabilizing Generative Adversarial Networks: A Survey
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
123
87
0
30 Sep 2019
Synthetic Data for Deep Learning
Synthetic Data for Deep Learning
Sergey I. Nikolenko
149
358
0
25 Sep 2019
Generalization in Generative Adversarial Networks: A Novel Perspective
  from Privacy Protection
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
Bingzhe Wu
Shiwan Zhao
Chaochao Chen
Haoyang Xu
Li Wang
Xiaolu Zhang
Guangyu Sun
Jun Zhou
52
45
0
21 Aug 2019
Curriculum based Dropout Discriminator for Domain Adaptation
Curriculum based Dropout Discriminator for Domain Adaptation
V. Kurmi
Vipul Bajaj
K. Venkatesh
Vinay P. Namboodiri
OOD
89
14
0
24 Jul 2019
Estimation of Absolute States of Human Skeletal Muscle via Standard
  B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks
Estimation of Absolute States of Human Skeletal Muscle via Standard B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks
Ryan Cunningham
Ian David Loram
30
28
0
02 Jul 2019
Benchmarking Regression Methods: A comparison with CGAN
Benchmarking Regression Methods: A comparison with CGAN
Karan Aggarwal
Matthieu Kirchmeyer
Pranjul Yadav
S. Keerthi
Patrick Gallinari
26
13
0
30 May 2019
Generative Adversarial Networks and Conditional Random Fields for
  Hyperspectral Image Classification
Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification
Zilong Zhong
Jonathan Li
David A Clausi
A. Wong
GAN
53
110
0
12 May 2019
Coordination and Trajectory Prediction for Vehicle Interactions via
  Bayesian Generative Modeling
Coordination and Trajectory Prediction for Vehicle Interactions via Bayesian Generative Modeling
Jiachen Li
Hengbo Ma
Wei Zhan
Masayoshi Tomizuka
65
24
0
02 May 2019
Test Selection for Deep Learning Systems
Test Selection for Deep Learning Systems
Wei Ma
Mike Papadakis
Anestis Tsakmalis
Maxime Cordy
Yves Le Traon
OOD
67
93
0
30 Apr 2019
Implicit Kernel Learning
Implicit Kernel Learning
Chun-Liang Li
Wei-Cheng Chang
Youssef Mroueh
Yiming Yang
Barnabás Póczós
VLM
66
42
0
26 Feb 2019
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach
Peilin Zhong
Yuchen Mo
Chang Xiao
Pengyu Chen
Changxi Zheng
34
5
0
13 Feb 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
88
278
0
11 Feb 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
120
810
0
07 Feb 2019
Adaptive Density Estimation for Generative Models
Adaptive Density Estimation for Generative Models
Thomas Lucas
K. Shmelkov
Alahari Karteek
Cordelia Schmid
Jakob Verbeek
GANDRL
93
32
0
04 Jan 2019
Physics-informed deep generative models
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CEPINN
87
59
0
09 Dec 2018
Generative Adversarial Network Training is a Continual Learning Problem
Generative Adversarial Network Training is a Continual Learning Problem
Kevin J. Liang
Chunyuan Li
Guoyin Wang
Lawrence Carin
GAN
36
50
0
27 Nov 2018
Quality-Aware Multimodal Saliency Detection via Deep Reinforcement
  Learning
Quality-Aware Multimodal Saliency Detection via Deep Reinforcement Learning
Tianlin Li
Tao Sun
Rui Yang
Chenglong Li
Bin Luo
Jin Tang
28
2
0
27 Nov 2018
Bayesian Cycle-Consistent Generative Adversarial Networks via
  Marginalizing Latent Sampling
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling
Haoran You
Yu Cheng
Tianheng Cheng
Chunliang Li
Pan Zhou
GAN
46
3
0
19 Nov 2018
Mixture Density Generative Adversarial Networks
Mixture Density Generative Adversarial Networks
Hamid Eghbalzadeh
Werner Zellinger
Gerhard Widmer
GAN
80
39
0
31 Oct 2018
12
Next